Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension
暂无分享,去创建一个
[1] Eigenvalues of sums of Hermitian matrices .III. , 1971 .
[3] Conditions necessaires de faible fermeture et de 1-rang convexite en dimension 3 , 1985 .
[4] Gilles Aubert,et al. Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2 , 1995 .
[5] R. W. Ogden,et al. A theorem of tensor calculus and its application to isotropic elasticity , 1971 .
[6] A. Horn. Eigenvalues of sums of Hermitian matrices , 1962 .
[7] H. Simpson,et al. On copositive matrices and strong ellipticity for isotropic elastic materials , 1983 .
[8] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[9] M. Šilhavý. On isotropic rank 1 convex functions , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[10] J. K. Knowles,et al. On the failure of ellipticity of the equations for finite elastostatic plane strain , 1976 .
[11] Sur la faible fermeture de certains ensembles de contraintes en elasticite non-lineaire plane , 1987 .
[12] E. Sternberg,et al. Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids , 1983 .
[13] John M. Ball,et al. Differentiability properties of symmetric and isotropic functions , 1984 .
[14] Miroslav Šilhavý,et al. The Mechanics and Thermodynamics of Continuous Media , 2002 .
[15] K. P. Hadeler,et al. On copositive matrices , 1983 .
[16] J. Ball. Convexity conditions and existence theorems in nonlinear elasticity , 1976 .
[17] R. Ogden,et al. On the definition of elastic moduli , 1971 .
[18] Robert L. Hill,et al. Constitutive inequalities for isotropic elastic solids under finite strain , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.