Water based fluidic radio frequency metamaterials

Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing proc...

[1]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[2]  S. Guenneau,et al.  Experiments on seismic metamaterials: molding surface waves. , 2014, Physical review letters.

[3]  Yu Luo,et al.  Macroscopic invisibility cloaking of visible light , 2010, Nature communications.

[4]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[5]  G. Hu,et al.  Experimental study for metamaterials based on dielectric resonators and wire frame , 2008 .

[6]  Y. Kivshar,et al.  Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials , 2015, Scientific Reports.

[7]  Yan Wang,et al.  Observation of the inverse Doppler effect in negative-index materials at optical frequencies , 2011 .

[8]  H. Lezec,et al.  Negative Refraction at Visible Frequencies , 2007, Science.

[9]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[10]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[11]  J. Stewart Aitchison,et al.  Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies , 2006 .

[12]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[13]  Y. Cheng,et al.  Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. , 2015, Nature materials.

[14]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[15]  S. Cummer,et al.  Three-dimensional broadband omnidirectional acoustic ground cloak. , 2014, Nature materials.

[16]  Young Joon Yoo,et al.  Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets , 2015, Scientific Reports.

[17]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[18]  J. Mock,et al.  Enhanced diffraction from a grating on the surface of a negative-index metamaterial. , 2004, Physical review letters.

[19]  N. Fang,et al.  Focusing ultrasound with an acoustic metamaterial network. , 2009, Physical review letters.

[20]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[21]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[22]  Bo Li,et al.  Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. , 2008, Physical review letters.

[23]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[24]  C. Sun,et al.  Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial , 2014, Nature Communications.

[25]  N. Seddon,et al.  Observation of the Inverse Doppler Effect , 2003, Science.

[26]  T. Cui,et al.  Three-dimensional broadband ground-plane cloak made of metamaterials , 2010, Nature communications.

[27]  Zhengyou Liu,et al.  Negative refraction of acoustic waves in two-dimensional phononic crystals , 2004 .

[28]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[29]  Pavel A. Belov,et al.  Subwavelength metallic waveguides loaded by uniaxial resonant scatterers. , 2005 .

[30]  V. M. García-Chocano,et al.  Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere. , 2013, Physical review letters.

[31]  P. Sheng,et al.  Transformation optics and metamaterials. , 2010, Nature materials.

[32]  Martin Maldovan,et al.  Sound and heat revolutions in phononics , 2013, Nature.

[33]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[34]  X. Zhang,et al.  Dielectric Optical Cloak , 2009, 0904.3602.

[35]  Jun Yang,et al.  i3DP, a robust 3D printing approach enabling genetic post-printing surface modification. , 2013, Chemical communications.

[36]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[37]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[38]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[39]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[40]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.