Fracture mechanics characterization of polymer composites for aerospace applications

Fibre-reinforced polymer-matrix composites find increasing use in high-performance aerospace structures and elements due to their light weight and the related high specific strength and stiffness. Over the last 20–30 years, fracture mechanics test method development for these materials has yielded several standards, and additional standard procedures are in preparation. The current status of standardization and development is briefly reviewed, and the applicability of fracture mechanics data for composites design and other uses in aerospace is discussed. Major issues are laminate layup, fatigue behaviour and service conditions. These are illustrated by selected data from the fracture mechanics literature.

[1]  K. Friedrich,et al.  Delamination toughness computation for curved thermoplastic composites , 1994 .

[2]  Silvestre T. Pinho,et al.  Translaminar fracture toughness testing of composites: A review , 2012 .

[3]  A simple model for the prediction of the fatigue delamination growth of impacted composite panels , 2004 .

[4]  L. Ye,et al.  Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10 wt% and 20 wt% silica nanoparticles in matrix resins , 2011 .

[5]  T. Takeda,et al.  Cryogenic delamination growth in woven glass/epoxy composite laminates under mixed-mode I/II fatigue loading , 2011 .

[6]  Kristopher P. Plain,et al.  An experimental study on mode I and II fracture toughness of laminates stitched with a one-sided stitching technique , 2011 .

[7]  C. S. Lopes,et al.  Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates , 2012 .

[8]  Rani Elhajjar,et al.  Mode-I fracture toughness testing of thick section FRP composites using the ESE(T) specimen , 2005 .

[9]  Tong Lin,et al.  Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites , 2012 .

[10]  J. G. Williams,et al.  Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites , 2001 .

[11]  A. Mouritz,et al.  Z -Pin Composites: Aerospace Structural Design Considerations , 2011 .

[12]  O. Ishai,et al.  Interlaminar fracture toughness and toughening of laminated composite materials: a review , 1989 .

[13]  G. Nurick,et al.  The blast resistance of a woven carbon fiber-reinforced epoxy composite , 2011 .

[14]  Peter Davies,et al.  A status report on delamination resistance testing of polymer-matrix composites , 2008 .

[15]  Tk O'Brien,et al.  Composite Interlaminar Shear Fracture Toughness, G IIc : Shear Measurement or Sheer Myth? , 1998 .

[16]  S. Mall,et al.  Delamination Growth in Graphite/Epoxy Composites Subjected to Cyclic Mode III Loading , 1989 .

[17]  B. Davidson,et al.  Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite , 2009 .

[18]  P. Robinson,et al.  Mode I DCB testing of composite laminates reinforced with z-direction pins: a simple model for the investigation of data reduction strategies , 2004 .

[19]  Y. Shindo,et al.  Double Cantilever Beam Measurement and Finite Element Analysis of Cryogenic Mode I Interlaminar Fracture Toughness of Glass-Cloth/Epoxy Laminates , 2001 .

[20]  I. Partridge,et al.  Exploring mechanical property balance in tufted carbon fabric/epoxy composites , 2007 .

[21]  Taketoshi Nojima,et al.  Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates , 1998 .

[22]  Masaki Hojo,et al.  Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf , 2006 .

[23]  Y. Wang,et al.  The failure of fibre composites and adhesively bonded fibre composites under high rates of test , 1996, Journal of Materials Science.

[24]  A. Brunner,et al.  Prospects in fracture mechanics of “engineering” laminates , 2005 .

[25]  R H Martin,et al.  Incorporating interlaminar fracture mechanics into design , 2000 .

[26]  J. Williams,et al.  The fracture mechanics of delamination tests , 1989 .

[27]  J. G. Williams,et al.  Delamination Fracture of Multidirectional Carbon-Fiber/Epoxy Composites under Mode I, Mode II and Mixed-Mode I/II Loading , 1999 .

[28]  J. Karger‐Kocsis,et al.  Effect of short fibre reinforcement on the fatigue crack propagation and fracture of PEEK-matrix composites , 1986 .

[29]  N. Himmel,et al.  Structurally stitched NCF CFRP laminates. Part 1: Experimental characterization of in-plane and out-of-plane properties , 2011 .

[30]  Roderick H. Martin Evaluation of the split cantilever beam for mode III delamination testing , 1991 .

[31]  H. Suemasu,et al.  Fracture Resistance of Carbon/Epoxy Composite Laminates under Mixed-Mode II and III Failure and Its Dependence on Fracture Morphology , 2011 .

[32]  T. Ishikawa Overview of trends in advanced composite research and applications in Japan , 2006 .

[33]  P. Compston,et al.  The Influence of Strain Rate on the Mode III Interlaminar Fracture of Composite Materials , 2007 .

[34]  L. Carlsson,et al.  Characterization of Mode I Delamination Growth in Glass/Epoxy Composite Cylinders , 2000 .

[35]  Xiaozhi Hu,et al.  Mode I delamination behaviour of short fibre reinforced carbon fibre/epoxy composites following environmental conditioning , 2003 .

[36]  Leslie Banks-Sills,et al.  The effect of adhesive thickness on interlaminar fracture toughness of interleaved cfrp specimens , 1989 .

[37]  B. Cox,et al.  Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers , 2002 .

[38]  Y. Shindo,et al.  Mode I fatigue delamination growth in GFRP woven laminates at low temperatures , 2005 .

[39]  Mark A. Miller,et al.  Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike , 2009 .

[40]  M. Mansori,et al.  Wear resistance and induced cutting damage of aeronautical FRP components obtained by machining , 2011 .

[41]  William P. Schonberg,et al.  Protecting Earth-orbiting spacecraft against micro-meteoroid/orbital debris impact damage using composite structural systems and materials: An overview , 2010 .

[42]  I. Partridge,et al.  Delamination of Z-pinned carbon fibre reinforced laminates , 2006 .

[43]  T. Adachi,et al.  Mode I fatigue delamination of Zanchor-reinforced CF/epoxy laminates , 2010 .

[44]  M. Gordić,et al.  Irradiation and annealing effects on delamination toughness in carbon/epoxy composite , 2009 .

[45]  M. Hinders,et al.  Translaminar Reinforced Composites: A Review , 1999 .

[46]  B. Fox,et al.  Manufacturing Influence on the Delamination Fracture Behavior of the T800H/3900-2 Carbon Fiber Reinforced Polymer Composites , 2007 .

[47]  Sang Yoon Park,et al.  Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications , 2012 .

[48]  Jonathan Hodgkin,et al.  Accelerated aging versus realistic aging in aerospace composite materials. II. Chemistry of thermal aging in a structural composite , 2006 .

[49]  Akira Todoroki,et al.  Artificial lightning testing on graphite/epoxy composite laminate , 2010 .

[50]  G. Verchery,et al.  On the determination of delamination toughness by using multidirectional DCB specimens , 2010 .

[51]  Gary Savage Enhancing the exploitation and efficiency of fibre-reinforced composite structures by improvement of interlaminar fracture toughness , 2006 .

[52]  I. Beyerlein,et al.  Delamination dynamics in through-thickness reinforced laminates with application to DCB specimen , 2002 .

[53]  Gretchen B. Murri,et al.  Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites , 1990 .

[54]  J. Viña,et al.  Effect of Hygrothermomechanical Aging on the Interlaminar Fracture Behavior of Woven Fabric Fiber/PEI Composite Materials , 2006 .

[55]  M. Benzeggagh,et al.  Mode I and Mode II Delamination of Thermosetting and Thermoplastic Composites , 1989 .

[56]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[57]  Ulf G. Goranson,et al.  Fatigue issues in aircraft maintenance and repairs , 1997 .

[58]  P. Davies,et al.  The influence of hydrostatic pressure on the interlaminar fracture toughness of carbon/epoxy composites , 2006 .

[59]  Laurent Michel,et al.  Mixed-mode delamination of multidirectional composite laminates at 0°/θ° ply interfaces , 2006 .

[60]  B. Ashrafi,et al.  Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes , 2011 .

[61]  M. Wisnom,et al.  Prediction of delamination in braided composite T-piece specimens , 2009 .

[62]  Jg Funk,et al.  The effects of radiation on the interlaminar fracture toughness of a graphite/epoxy composite , 1986 .

[63]  M.F.S.F. de Moura,et al.  Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test , 2009 .

[64]  N. Fleck,et al.  In-plane properties of composite laminates with through-thickness pin reinforcement , 2006 .

[65]  Effect of cure pressure on the behaviour of woven carbon/epoxy composite materials , 2003 .

[66]  Adrian P. Mouritz,et al.  Review of applications for advanced three-dimensional fibre textile composites , 1999 .

[67]  I. Bond,et al.  Mode II interfacial toughening through discontinuous interleaves for damage suppression and control , 2012 .

[68]  L. Carlsson,et al.  Redesign of the ECT Test for Mode III Delamination Testing. Part I: Finite Element Analysis , 2010 .

[69]  K. Rhee,et al.  Study on an oxygen plasma treatment of a basalt fiber and its effect on the interlaminar fracture property of basalt/epoxy woven composites , 2011 .

[70]  C. Gustafson,et al.  Effect of matrix resin on delamination fatigue crack growth in CFRP laminates , 1994 .

[71]  M. Hojo,et al.  RATE-DEPENDENT MODE II INTERLAMINAR FRACTURE BEHAVIOR OF CARBON-FIBER/EPOXY COMPOSITE LAMINATES , 1999 .

[72]  Paolo Feraboli,et al.  Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites , 2011 .

[73]  W. S. Johnson,et al.  Effect of Temperature on Mode I Interlaminar Fracture of IM7/PETI-5 and IM7/977-2 Laminates , 2009 .

[74]  J. Rice,et al.  Elementary engineering fracture mechanics , 1974 .

[75]  M. Quaresimin,et al.  Energy absorption capability of nanomodified glass/epoxy laminates , 2011 .

[76]  O. Ishai Interlaminar fracture toughness of selectively stitched thick carbon fibre reinforced polymer fabric composite laminates , 2000 .

[77]  J. Andersons,et al.  Dependence of fracture toughness of composite laminates on interface ply orientations and delamination growth direction , 2004 .

[78]  A. Morais,et al.  Mixed mode I + II interlaminar fracture of carbon/epoxy laminates , 2008 .

[79]  Barry D. Davidson,et al.  Evaluation of Precracking Methods for the End-Notched Flexure Test , 2007 .

[80]  Gerald Pinter,et al.  Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions , 2009 .

[81]  T. Takeda,et al.  Mixed-mode I/III fatigue delamination growth in woven glass/epoxy composite laminates at cryogenic temperatures , 2014 .

[82]  A. Brunner Experimental study of delamination in cross-ply laminates , 2008 .

[83]  L. Ye,et al.  Fracture mechanisms of epoxy-based ternary composites filled with rigid-soft particles , 2012 .

[84]  A. Brunner,et al.  Mode I delamination , 2001 .

[85]  Andreas J. Brunner,et al.  Mode II fracture testing of composites: a new look at an old problem , 2006 .

[86]  Y. Shindo,et al.  Mode III fatigue delamination growth of glass fiber reinforced polymer woven laminates at cryogenic temperatures , 2009 .

[87]  Masaki Hojo,et al.  Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates , 2006 .

[88]  A. Szekrényes Interlaminar fracture analysis in the GII-GIII plane using prestressed transparent composite beams , 2009 .

[89]  George S. Springer,et al.  Delamination Growth in Composites under Cyclic Loads , 1994 .

[90]  T. Takeda,et al.  Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures , 2013 .

[91]  I. Chou Effect of fiber orientation and moisture absorption on the interlaminar fracture toughness of CFRP laminates , 1998 .

[92]  Tong Earn Tay,et al.  Characterization and analysis of delamination fracture in composites: An overview of developments from 1990 to 2001 , 2003 .

[93]  A. Brunner,et al.  Delamination fracture of continuous fibre composites: Mixed-mode fracture , 2001 .

[94]  Adrian Tighe,et al.  Overview of the Natural Space Environment and ESA, JAXA, and NASA Materials Flight Experiments , 2010 .

[95]  L. Michel,et al.  Effects of Stitching on Delamination of Satin Weave Carbon-Epoxy Laminates Under Mode I, Mode II and Mixed-Mode I/II Loadings , 2010 .

[96]  A. Morais,et al.  Mixed Bending-Tension (MBT) test for mode I interlaminar and intralaminar fracture , 2012 .

[97]  M. Kortschot,et al.  The Relationship Between Critical Strain Energy Release Rate and Fracture Mode in Multidirectional Carbon-Fiber/Epoxy Laminates , 1997 .

[98]  T. Takeda,et al.  Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods , 2008 .

[99]  A. Brunner,et al.  Mode II delamination , 2001 .

[100]  M. Hojo,et al.  Thickness Effect of Double Cantilever Beam Specimen on Interlaminar Fracture Toughness of AS4/PEEK and T800/Epoxy Laminates , 1993 .

[101]  A. J Brunner,et al.  Experimental aspects of Mode I and Mode II fracture toughness testing of fibre-reinforced polymer-matrix composites , 2000 .

[102]  Steffen Stelzer,et al.  Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: Results from ESIS TC4 round-robins , 2014 .

[103]  Dirk Vandepitte,et al.  A new damage model for composite laminates , 2012 .

[104]  G. Terrasi,et al.  Mode II fatigue delamination resistance of advanced fiber-reinforced polymer–matrix laminates: Towards the development of a standardized test procedure , 2013 .

[105]  N. Blanco,et al.  Numerical investigation to prevent crack jumping in Double Cantilever Beam tests of multidirectional composite laminates , 2011 .

[106]  P. Davies,et al.  A study of the effect of forming temperature on the mechanical behaviour of carbon-fibre/peek composites , 1993 .

[107]  Barry D. Davidson,et al.  Mixed-mode I–II–III delamination toughness determination via a shear–torsion-bending test , 2011 .

[108]  Y. Shindo,et al.  End-Notched Flexure Testing and Analysis of Mode II Interlaminar Fracture Behavior of Glass-Cloth/Epoxy Laminates at Cryogenic Temperatures , 2002 .

[109]  W. S. Teo,et al.  The fracture behaviour of adhesively-bonded composite joints: Effects of rate of test and mode of loading , 2012 .

[110]  Adrian P. Mouritz,et al.  Review of z-pinned composite laminates , 2007 .

[111]  N. Takeda,et al.  Interlaminar fracture toughness degradation of radiation-damaged GFRP and CFRP composites , 1995 .

[112]  Lars Berglund,et al.  Application of bridging-law concepts to short-fibre compositesPart 1: DCB test procedures for bridging law and fracture energy , 2000 .

[113]  M. Hojo,et al.  Mode II interlaminar properties under static and fatigue loadings for CF/epoxy laminates with different fiber-surface treatment , 2001 .

[114]  H. Pettermann,et al.  Numerical simulation of delamination in laminated composite components – A combination of a strength criterion and fracture mechanics , 2009 .

[115]  A. Morais,et al.  Mixed mode II + III interlaminar fracture of carbon/epoxy laminates , 2008 .

[116]  F W J van Hattum,et al.  Cost reduction in manufacturing of aerospace composites , 2011 .

[117]  G. LaPlante,et al.  Environmental effects on mode II fatigue delamination growth in an aerospace grade carbon/epoxy composite , 2012 .

[118]  Pierre J. A. Minguet,et al.  Comparison of Delamination Characterization for IM7/8552 Composite Woven and Tape Laminates , 2003 .

[119]  A. Brunner,et al.  Effects of Mesostructure on Crack Growth Control Characteristics in Z-Pinned Laminates , 2003 .

[120]  H. Lindberg,et al.  Nanotechnologies, engineered nanomaterials and occupational health and safety – A review , 2010 .

[121]  A. Mouritz Post-fire flexural properties of fibre-reinforced polyester, epoxy and phenolic composites , 2002 .

[122]  Gretchen B. Murri,et al.  Testing and Life Prediction for Composite Rotor Hub Flexbeams , 2013 .

[123]  Steffen Stelzer,et al.  Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: development of a standardized test procedure , 2012 .