Design and evaluation of feature detectors

Many applications in both image processing and computational vision rely upon the robust detection of parametric image features and the accurate estimation of their parameters. In this thesis, I address three fundamental questions related to the design and evaluation of parametric feature detectors. Most feature detectors have been designed to detect a single type of feature, more often than not, the step edge. A large number of other features are also of interest. Since the task of designing a feature detector is very time consuming, repeating the design effort for each feature is wasteful. To address this deficiency, in the first part of this thesis I develop an algorithm that takes as input a description of a parametric feature and automatically constructs a detector for it. The development of many feature detectors begins with an ideal model of the feature. Since image data are noisy, feature detectors must actually detect features that are almost, but not quite, ideal. Many existing feature detectors can therefore be regarded as being defined by two components: (1) an ideal feature model, and (2) a function that measures how far the image data may deviate from ideal and still be regarded as the feature. For many detectors, little consideration has been given to the selection of the second of these two components. In the second part of this thesis, I present a method of selecting the deviation function to maximize the performance of the general purpose feature detector described in the first part. Essentially only two methods have actually been used to evaluate feature detectors empirically. The first consists of applying the detectors to a small number of real images and getting a human to evaluate the outputs. The second method involves generating a large number of synthetic images and then computing performance metrics from the outputs using knowledge of the way that the synthetic images were generated. Both of these approaches have their flaws. The first method is subjective. The second method does not use real images. In the third and final part of this thesis, I propose a class of evaluation techniques that use a large number of real images, and yet provide non-subjective performance metrics.

[1]  W. Lunscher,et al.  Optimal Edge Detector Design I: Parameter Selection and Noise Effects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Qiuming Zhu,et al.  Efficient evaluations of edge connectivity and width uniformity , 1996, Image Vis. Comput..

[3]  Michael Brady,et al.  Computational Approaches to Image Understanding , 1982, CSUR.

[4]  H. Nagel,et al.  On the Selection of Critical Points and Local Curvature Extrema of Region Boundaries for Interframe Matching , 1983 .

[5]  Ralph Hartley,et al.  A Gaussian-weighted multiresolution edge detector , 1985, Comput. Vis. Graph. Image Process..

[6]  J.H. Elder,et al.  Scale space localization, blur, and contour-based image coding , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Augusto Sarti,et al.  Estimation and Compensation of Subpixel Edge Localization Error , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Thomas S. Huang,et al.  Nonparametric tests for edge detection in noise , 1986, Pattern Recognit..

[9]  Wolfram H. H. J. Lunscher,et al.  The Asymptotic Optimal Frequency Domain Filter for Edge Detection , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Fred M. Dickey,et al.  An Optimal Frequency Domain Filter for Edge Detection in Digital Pictures , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[12]  B. Logan Information in the zero crossings of bandpass signals , 1977, The Bell System Technical Journal.

[13]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[14]  Shree K. Nayar,et al.  Pattern rejection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  V. Michael Bove,et al.  Semiautomatic 3-D model extraction from uncalibrated 2-D camera views , 1995 .

[17]  C. Steger,et al.  Analytical and Empirical Performance Evaluation of Subpixel Line and Edge Detection , .

[18]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[20]  Christopher G. Harris,et al.  Determination of Ego-Motion from Matched Points , 1987, Alvey Vision Conference.

[21]  J. Alison Noble,et al.  Finding Corners , 1988, Alvey Vision Conference.

[22]  Steven W. Zucker,et al.  A Three-Dimensional Edge Operator , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Jack Sklansky,et al.  Multiple-order derivatives for detecting local image characteristics , 1987 .

[24]  Robert M. Haralick,et al.  Performance characterization of edge detectors , 1992, Defense, Security, and Sensing.

[25]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[26]  Azriel Rosenfeld,et al.  Multidimensional Edge Detection by Hypersurface Fitting , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Axel Korn,et al.  Toward a Symbolic Representation of Intensity Changes in Images , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Peter Meer,et al.  Performance Assessment Through Bootstrap , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Nasser E. Nahi,et al.  Image Boundary Estimation , 1977, IEEE Transactions on Computers.

[32]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[33]  James T. Tippett,et al.  OPTICAL AND ELECTRO-OPTICAL INFORMATION PROCESSING, , 1965 .

[34]  Duane C. Brown,et al.  Close-Range Camera Calibration , 1971 .

[35]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[36]  Edward S. Deutsch,et al.  A Quantitative Study of the Orientation Bias of Some Edge Detector Schemes , 1978, IEEE Transactions on Computers.

[37]  Robert M. Haralick,et al.  A methodology for quantitative performance evaluation of detection algorithms , 1995, IEEE Trans. Image Process..

[38]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[39]  Arnold K. Griffith,et al.  Mathematical Models for Automatic Line Detection , 1971, JACM.

[40]  Peter N. Yianilos,et al.  Data structures and algorithms for nearest neighbor search in general metric spaces , 1993, SODA '93.

[41]  Robert M. Haralick,et al.  Ridges and valleys on digital images , 1983, Comput. Vis. Graph. Image Process..

[42]  J. Alison Noble,et al.  Finding Corners , 1988, Alvey Vision Conference.

[43]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  Paul Beaudet,et al.  Rotationally invariant image operators , 1978 .

[45]  Jun S. Huang,et al.  Statistical theory of edge detection , 1988, Comput. Vis. Graph. Image Process..

[46]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[47]  Han Wang,et al.  Gray Level Corner Detection , 1998, MVA.

[48]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[49]  J. Galayda Edge Focusing , 1981, IEEE Transactions on Nuclear Science.

[50]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Josef Kittler,et al.  A Performance Measure for Boundary Detection Algorithms , 1996, Comput. Vis. Image Underst..

[52]  J. Shen,et al.  New edge detection methods based on exponential filter , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[53]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  A. C. Aitken IV.—On Least Squares and Linear Combination of Observations , 1936 .

[55]  S. P. Mudur,et al.  Three-dimensional computer vision: a geometric viewpoint , 1993 .

[56]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[57]  John Krumm,et al.  Eigenfeatures for planar pose measurement of partially occluded objects , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[60]  V. Berzins Accuracy of laplacian edge detectors , 1984 .

[61]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[63]  Isaac Weiss,et al.  Smoothed differentiation filters for images , 1992, J. Vis. Commun. Image Represent..

[64]  Reiner Lenz,et al.  Optimal filters for the detection of linear patterns in 2-D and higher dimensional images , 1987, Pattern Recognit..

[65]  Azriel Rosenfeld,et al.  Edge Evaluation Using Local Edge Coherence , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[66]  Hans-Hellmut Nagel,et al.  Displacement vectors derived from second-order intensity variations in image sequences , 1983, Comput. Vis. Graph. Image Process..

[67]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[68]  K. Raghunath Rao,et al.  Optimal Edge Detection using Expansion Matching and Restoration , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  HUECKEL DETECTOItS Evaluation of a Simplified Hueckel Edge-Line Detector , 1976 .

[70]  Frank O'Gorman,et al.  Edge Detection Using Walsh Functions , 1976, Artif. Intell..

[71]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[72]  M. Brooks Rationalizing edge detectors , 1978 .

[73]  David G. Morgenthaler A new hybrid edge detector , 1981 .

[74]  G. Kanizsa Subjective contours. , 1976, Scientific American.

[75]  Manfred H. Hueckel An Operator Which Locates Edges in Digitized Pictures , 1971, J. ACM.

[76]  Ramesh C. Jain,et al.  Detecting time-varying corners , 1984, Comput. Vis. Graph. Image Process..

[77]  J. F. Abramatic Why the simplest “Hueckel” edge detector is a Roberts operator , 1981 .

[78]  R. Haralick Edge and region analysis for digital image data , 1980 .

[79]  Shree K. Nayar,et al.  Algorithms for pattern rejection , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[80]  Wolfram H. H. J. Lunscher,et al.  Optimal Edge Detector Design II: Coefficient Quantization , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Azriel Rosenfeld,et al.  The Max Roberts Operator is a Hueckel-Type Edge Detector , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[82]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[85]  Didier Demigny,et al.  A Discrete Expression of Canny's Criteria for Step Edge Detector Performances Evaluation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[86]  Libor Spacek,et al.  Edge detection and motion detection , 1986, Image Vis. Comput..

[87]  Aaron Heller,et al.  An experimental evaluation of projective invariants , 1992 .

[88]  Vishvjit S. Nalwa,et al.  A guided tour of computer vision , 1993 .

[89]  J. Modestino,et al.  Edge Detection in Noisy Images using Recursive Digital Filtering. , 1977 .

[90]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[91]  Vishvjit S. Nalwa Edge-Detector Resolution Improvement by Image Interpolation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  Dmitry B. Goldgof,et al.  An Objective Comparison Methodology of Edge Detection Algorithms Using a Structure from Motion Task , 1998, CVPR.

[93]  Harry N. Norton,et al.  Sensor and Analyzer Handbook , 1982 .

[94]  Gérard G. Medioni,et al.  Fast Convolution with Laplacian-of-Gaussian Masks , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Edward S. Deutsch,et al.  On the Quantitative Evaluation of Edge Detection Schemes and their Comparison with Human Performance , 1975, IEEE Transactions on Computers.

[96]  Kim L. Boyer,et al.  The laplacian-of-gaussian kernel: A formal analysis and design procedure for fast, accurate convolution and full-frame output , 1989, Comput. Vis. Graph. Image Process..

[97]  Robert A. Hummel,et al.  Feature detection using basis functions , 1979 .

[98]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Ingemar J. Cox,et al.  On Optimum Edge Recognition using Matched Filters , 1986, CVPR 1986.

[100]  R. Plackett,et al.  Principles of regression analysis , 1961 .

[101]  S. Hunter The Museum of Modern Art, New York: The History and the Collection , 1984 .

[102]  K. Paton Picture Description Using Legendre Polynomials , 1975 .

[103]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  Y. Tsai Roger An Efficient and Accurate Camera Calibration Technique For 3D Machine Vision , 1986, CVPR 1986.