Ultrametric Distance in Syntax

Abstract Phrase structure trees have a hierarchical structure. In many subjects, most notably in taxonomy such tree structures have been studied using ultrametrics. Here syntactical hierarchical phrase trees are subject to a similar analysis, which is much simpler as the branching structure is more readily discernible and switched. The ambiguity of which branching height to choose, is resolved by postulating that branching occurs at the lowest height available. An ultrametric produces a measure of the complexity of sentences: presumably the complexity of sentences increases as a language is acquired so that this can be tested. All ultrametric triangles are equilateral or isosceles. Here it is shown that X̅ structure implies that there are no equilateral triangles. Restricting attention to simple syntax a minimum ultrametric distance between lexical categories is calculated. A matrix constructed from this ultrametric distance is shown to be different than the matrix obtained from features. It is shown that the definition of C-COMMAND can be replaced by an equivalent ultrametric definition. The new definition invokes a minimum distance between nodes and this is more aesthetically satisfying than previous varieties of definitions. From the new definition of C-COMMAND follows a new definition of of the central notion in syntax namely GOVERNMENT.

[1]  Stefan Boettcher,et al.  Aging in a Model of Self-Organized Criticality , 1997 .

[2]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[3]  A Prince,et al.  Optimality: From Neural Networks to Universal Grammar , 1997, Science.

[4]  Jan J. M. M. Rutten,et al.  Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..

[5]  Higgs Overlaps between RNA secondary structures. , 1996, Physical review letters.

[6]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[7]  E. Keenan,et al.  Noun Phrase Accessibility and Universal Grammar , 2008 .

[8]  Feng Xia,et al.  Introduction to , 2015, ACM Trans. Multim. Comput. Commun. Appl..

[9]  Edward L. Keenan,et al.  Noun Phrase Accessibility and , 1977 .

[10]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[11]  Wlodek Zadrozny Minimum Description Length and Compositionality , 2000, ArXiv.

[12]  Mark D. Roberts,et al.  Name Strategy: Its Existence and Implications , 1998, ArXiv.

[13]  S. Freytag Knowledge Of Language Its Nature Origin And Use , 2016 .

[14]  Rudolf P. Botha,et al.  Challenging Chomsky: The Generative Garden Game , 1989 .

[15]  Peter H. A. Sneath,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification , 1973 .

[16]  Rolf Backofen,et al.  A first-order axiomatization of the theory of finite trees , 1995, J. Log. Lang. Inf..

[17]  C. P. Biggam The Semantics of Colour: Basic colour terms , 2012 .

[18]  Ray Jackendoff,et al.  X Syntax: A Study of Phrase Structure , 1980 .

[19]  Fionn Murtagh,et al.  On Ultrametricity, Data Coding, and Computation , 2004, J. Classif..

[20]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[21]  S. Levinson,et al.  The myth of language universals: language diversity and its importance for cognitive science. , 2009, The Behavioral and brain sciences.

[22]  R. Vilela Mendes,et al.  Hierarchical structures and asymmetric stochastic processes on p-adics and adeles , 1994 .

[23]  Noam Chomsky Knowledge of Language , 1986 .

[24]  E. Holmyard,et al.  Introduction to the History of Science , 1927, Nature.

[25]  Marcel Ovidiu Vlad Fractal time, ultrametric topology and fast relaxation , 1994 .

[26]  H. Prauser,et al.  Robert R. Sokal und Peter H. A. Sneath, Principles of Numerical Taxonomy 1. Aufl. XVI, 359 S., 38 Abb., 21 Tab. San Francisco and London 1963: W. H. Freeman and Company 60 s , 1966 .

[27]  Vincent Moulton,et al.  T-theory: An Overview , 1996, Eur. J. Comb..

[28]  Noam Chomsky Knowledge of language: its nature, origin, and use , 1988 .

[29]  Michael B. Weissman,et al.  What is a spin glass? A glimpse via mesoscopic noise , 1993 .

[30]  Lyn Frazier,et al.  Sentence processing: A tutorial review. , 1987 .

[31]  Liliane Haegeman,et al.  Introduction to Government and Binding Theory , 1991 .

[32]  Lukas Furst,et al.  X Syntax A Study Of Phrase Structure , 2016 .

[33]  Néstor Parga,et al.  The ultrametric organization of memories in a neural network , 1986 .

[34]  Françoise Delon,et al.  Espaces Ultrametriques , 1984, J. Symb. Log..

[35]  Irving Kaplansky Set theory and metric spaces , 1972 .

[36]  T. Snijders,et al.  10. Settings in Social Networks: A Measurement Model , 2003 .

[37]  Willem J. M. Levelt Hierarchical clustering algorithms in the psychology of grammar , 1970 .

[38]  W. DeSarbo,et al.  A parametric procedure for ultrametric tree estimation from conditional rank order proximity data , 1995 .

[39]  Baldi,et al.  Bounds on the size of ultrametric structures. , 1986, Physical review letters.

[40]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[41]  George Sarton,et al.  An Introduction to the History of Science , 1953 .

[42]  Mark D. Roberts,et al.  P-model Alternative to the T-model , 1998, ArXiv.

[43]  M. G. Say,et al.  Relativistic Quantum Fields , 1966 .

[44]  Carlo Cecchetto,et al.  Introduction to Government and Binding Theory , 1996 .

[45]  Alain Guénoche Order Distance Associated with a Hierarchy , 1997 .

[46]  W. Libby An Introduction to the History of Science , 1917, Nature.

[47]  Adnan Al Mubaideen The Psychological Reality of Phrase Structure Rules , 2015 .

[48]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .