New lower bound techniques for VLSI

In this paper, we use crossing number and wire area arguments to find lower bounds on the layout area and maximum edge length of a variety of new and computationally useful networks. In particular, we describe1)anN-node planar graph which has layout area θ(NlogN) and maximum edge length θ(N1/2/log1/2N),2)anN-node graph with anO(x1/2)-separator which has layout area θ(Nlog2N) and maximum edge length θ(N1/2logN/loglogN), and3)anN-node graph with anO(x1−1/r)-separator which has maximum edge length θ(N1−1/r) for anyr ≥ 3.

[1]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[2]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[3]  Leslie G. Valiant Computing Multivariate Polynomials in Parallel , 1980, Inf. Process. Lett..

[4]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[5]  W. L. Ruzzo,et al.  Minimum Edge Length Planar Embeddings of Trees , 1981 .

[6]  H. T. Kung,et al.  On the Area of Binary Tree Layouts , 1980, Inf. Process. Lett..

[7]  Jean Vuillemin,et al.  A Combinatorial Limit to the Computing Power of VLSI Circuits , 1983, IEEE Transactions on Computers.

[8]  Charles E. Leiserson,et al.  Area-Efficient VLSI Computation , 1983 .

[9]  Gérard M. Baudet On the Area Required by VLSI Circuits , 1981 .

[10]  C. Thomborson,et al.  Area-time complexity for VLSI , 1979, STOC.

[11]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[12]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Bernard Chazelle,et al.  Census functions: An approach to VLSI upper bounds , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[14]  Lowell W. Beineke,et al.  The crossing number of C3 × Cn , 1978, J. Comb. Theory, Ser. B.

[15]  F. Leighton LAYOUT FOR THE SHUFFLE-EXCHANGE GRAPH AND LOWER BOUND TECHNIQUES FOR VLSI , 1982 .

[16]  Richard J. Lipton,et al.  Lower bounds for VLSI , 1981, STOC '81.

[17]  Gary L. Miller,et al.  New layouts for the shuffle-exchange graph(Extended Abstract) , 1981, STOC '81.

[18]  Lawrence Snyder,et al.  Bounds on minimax edge length for complete binary trees , 1981, STOC '81.

[19]  Franco P. Preparata,et al.  A Critique and an Appraisal of VLSI Models of Computation. , 1981 .

[20]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[21]  Franco P. Preparata,et al.  Area-Time Optimal VLSI Networks for Multiplying Matrices , 1980, Inf. Process. Lett..

[22]  Jean Vuillemin,et al.  A combinatorial limit to the computing power of V.L.S.I. circuits , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[23]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[24]  Daniel J. Kleitman,et al.  The crossing number of K5,n , 1970 .

[25]  Thompson The VLSI Complexity of Sorting , 1983, IEEE Transactions on Computers.

[26]  S. N. Maheshwari,et al.  Efficient VLSI Networks for Parallel Processing Based on Orthogonal Trees , 1983, IEEE Transactions on Computers.

[27]  Frank Thomson Leighton A layout strategy for VLSI which is provably good (Extended Abstract) , 1982, STOC '82.

[28]  John E. Savage,et al.  Area-Time Tradeoffs for Matrix Multiplication and Related Problems in VLSI Models , 1981, J. Comput. Syst. Sci..

[29]  F. Leighton New lower bound techniques for VLSI , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[30]  David E. Muller,et al.  Bounds to Complexities of Networks for Sorting and for Switching , 1975, JACM.