Particle and Kalman filtering for fault diagnosis in DC motors

Fault diagnosis is a major problem in industrial systems, and is of primary interest for mobile and industrial robotics where electric motors are used. In this paper fault diagnosis with the use of the Kalman Filter is compared to fault diagnosis based on Particle Filter. The Kalman Filter assumes linear model representation and Gaussian measurement noise whereas the Particle Filter is suitable for nonlinear models and does not make any assumption on the measurement noise distribution. The performance of the proposed methodology is tested through simulation experiments.

[1]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[2]  Johann Fichou,et al.  Particle-based methods for parameter estimation and tracking: Numerical experiments , 2004 .

[3]  Gerasimos G Rigatos,et al.  Particle and Kalman filtering for state estimation and control of DC motors. , 2009, ISA transactions.

[4]  Jui-Hong Horng,et al.  Neural Adaptive Tracking Control of a DC Motor , 1999, Inf. Sci..

[5]  Rolf Isermann,et al.  Application of model-based fault detection to a brushless DC motor , 2000, IEEE Trans. Ind. Electron..

[6]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[7]  Visakan Kadirkamanathan,et al.  Particle filtering based likelihood ratio approach to fault diagnosis in nonlinear stochastic systems , 2001, IEEE Trans. Syst. Man Cybern. Part C.

[8]  Michèle Basseville,et al.  Detection of abrupt changes , 1993 .

[9]  Gerasimos Rigatos,et al.  Extended Kalman filtering for fuzzy modelling and multi-sensor fusion , 2007 .

[10]  Michèle Basseville,et al.  Early warning of slight changes in systems , 1994, Autom..

[11]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[12]  Spyros G. Tzafestas,et al.  H α tracking of uncertain SISO nonlinear systems: an observer-based adaptive fuzzy approach , 2007, Int. J. Syst. Sci..

[13]  Qinghua Zhang,et al.  Nonlinear system fault detection and isolation based on bootstrap particle filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Leang-San Shieh,et al.  Actuator fault detection and performance recovery with Kalman filter-based adaptive observer , 2007, Int. J. Gen. Syst..

[15]  Gerasimos Rigatos,et al.  Particle filtering for state estimation in industrial robotic systems , 2008 .

[16]  Richard Dearden,et al.  Particle Filters for Real-Time Fault Detection in Planetary Rovers , 2001 .

[17]  Kok Kiong Tan,et al.  Fault Detection, Isolation, and Accommodation Control in Robotic Systems , 2008, IEEE Transactions on Automation Science and Engineering.

[18]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[19]  Fabien Campillo,et al.  FILTRAGE PARTICULAIRE & MODÈLES DE MARKOV CACHÉS , 2006 .

[20]  Gerasimos Rigatos,et al.  Fuzzy model validation using the local statistical approach , 2009, Fuzzy Sets Syst..

[21]  V. F. Filaretov,et al.  Observer-based fault diagnosis in manipulation robots , 1999 .

[22]  Mohamed Darouach,et al.  Robust Fault Diagnosis with a Two-stage Kalman Estimator , 1997, Eur. J. Control.