Landauer’s Principle as a Special Case of Galois Connection

It is demonstrated how to construct a Galois connection between two related systems with entropy. The construction, called the Landauer’s connection, describes coupling between two systems with entropy. It is straightforward and transfers changes in one system to the other one, preserving ordering structure induced by entropy. The Landauer’s connection simplifies the description of the classical Landauer’s principle for computational systems. Categorification and generalization of the Landauer’s principle opens the area of modeling of various systems in presence of entropy in abstract terms.

[1]  M. Feng,et al.  Single-Atom Demonstration of the Quantum Landauer Principle. , 2018, Physical review letters.

[2]  J. Boyling An axiomatic approach to classical thermodynamics , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[4]  G. Church,et al.  CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria , 2017, Nature.

[5]  Z. Li,et al.  Algebraic properties of DNA operations. , 1999, Bio Systems.

[6]  H. Herzel,et al.  Estimating the entropy of DNA sequences. , 1997, Journal of theoretical biology.

[7]  Emil Popescu,et al.  On Galois Connexions , 1994 .

[8]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[9]  Masud Mansuripur,et al.  Introduction to information theory , 1986 .

[10]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[11]  D. H. White,et al.  Biological systems. , 2001, Environment international.

[12]  Gregory J. Barlow,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems Fitness Functions in Evolutionary Robotics: a Survey and Analysis , 2022 .

[13]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[14]  James Ladyman,et al.  The connection between logical and thermodynamic irreversibility , 2007 .

[15]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[16]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[17]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[18]  E. Babson,et al.  Group Actions on Posets , 2003, math/0310055.

[19]  L. Karl DNA computing: Arrival of biological mathematics , 1997 .

[20]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[21]  John C. Baez,et al.  A Bayesian Characterization of Relative Entropy , 2014, ArXiv.

[22]  E. Lieb,et al.  The physics and mathematics of the second law of thermodynamics (Physics Reports 310 (1999) 1–96)☆ , 1997, cond-mat/9708200.

[23]  Jiajie Peng,et al.  A Generalized Topological Entropy for Analyzing the Complexity of DNA Sequences , 2014, PloS one.

[24]  Max Tegmark The Mathematical Universe , 2007, Foundations of Physics.

[25]  Tammo tom Dieck,et al.  Transformation groups and representation theory , 1979 .

[26]  A. Mallios,et al.  Differential Sheaves and Connections: A Natural Approach to Physical Geometry , 2015 .

[27]  M. T. Vaughn Geometry in Physics , 2008 .

[28]  E. Lieb,et al.  A Guide to Entropy and the Second Law of Thermodynamics , 1998, math-ph/9805005.

[29]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[30]  David I. Spivak,et al.  Seven Sketches in Compositionality: An Invitation to Applied Category Theory , 2018, 1803.05316.

[31]  John C. Baez,et al.  Relative Entropy in Biological Systems , 2015, Entropy.

[32]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[33]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[34]  J. R. Arias-Gonzalez Entropy Involved in Fidelity of DNA Replication , 2012, PloS one.