Modelling of pressures and flow in silos

The modelling of pressures in silos has been attempted by numerous researchers using a variety of different methods. Starting with the work of Janssen, the slice element method, the method of characteristics, the finite element method and the method of granular dynamics are reviewed. Every model needs constitutive parameters which have to be found from experiments. A method to calibrate the more recent – and highly complex – constitutive models from general tests is presented. Besides the models for silo pressures, several models of flow in silos are considered.

[1]  Numerical Test with Discrete Element Method , 1993 .

[2]  Richard J. Bathurst,et al.  Micromechanical features of granular assemblies with planar elliptical particles , 1992 .

[3]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[4]  J. Schwedes,et al.  Measurement of flow properites of bulk solids , 1990 .

[5]  Extension of elastoplastic constitutive models with respect to cohesive bulk solids , 1992 .

[6]  Dimitrios Kolymbas,et al.  An outline of hypoplasticity , 1991, Archive of Applied Mechanics.

[7]  P. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART II. MECHANICAL CALCULATIONS FOR MOTION AND INTERACTION OF A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[8]  Poul V. Lade,et al.  Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces , 1977 .

[9]  Jörg Schwedes,et al.  Measurement of flow properties of bulk solids , 1996 .

[10]  J. Eibl,et al.  Numerical investigations on discharging silos , 1984 .

[11]  R. M. Nedderman,et al.  Stress distribution in hoppers , 1978 .

[12]  Gerd Gudehus,et al.  Observed stress-strain behaviour of remoulded saturated clay under plane strain conditions , 1990 .

[13]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[14]  Rudolf Kvapil,et al.  Gravity flow of granular materials in Hoppers and bins in mines—II. Coarse material , 1965 .

[15]  H. Feise,et al.  Calibration of an Hypoplastic Constitutive Model From True Biaxial Tests , 1993 .

[16]  G. Enstad,et al.  ON THE THEORY OF ARCHING IN MASS FLOW HOPPERS , 1975 .

[17]  S. Sture,et al.  Analysis and calibration of a three-invariant plasticity model for granular materials , 1989 .

[18]  J. S. Mason,et al.  Bulk solids handling , 1987 .

[19]  J. Schwedes,et al.  Analysis of the active stress field in hoppers , 1985 .

[20]  Hans-Michael Voigt,et al.  Pattern Formation by Natural Selection with Applications to Decision Support , 1986 .

[21]  P. A. Cundall,et al.  FORMULATION OF A THREE-DIMENSIONAL DISTINCT ELEMENT MODEL - PART I. A SCHEME TO DETECT AND REPRESENT CONTACTS IN A SYSTEM COMPOSED OF MANY POLYHEDRAL BLOCKS , 1988 .

[22]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[23]  D. M. Walker An approximate theory for pressures and arching in hoppers , 1966 .

[24]  J. K. Walters,et al.  A theoretical analysis of stresses in axially-symmetric hoppers and bunkers , 1973 .

[25]  David Newland,et al.  Efficient computer simulation of moving granular particles , 1994 .

[26]  D. Müller,et al.  Identification of Materials Parameters for Inelastic Constitutive Models Using Principles of Biologic Evolution , 1989 .

[27]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .