Parameter Reduction of Higher Level Grammars

A higher level (OI-)grammar is called terminating, if for every accessible term t there is at least one terminal term which can be derived from t. A grammar is called parameter-reduced, if it is terminating and has no superfluous parameters.

[1]  Werner Damm Higher type program schemes and their tree languages , 1977, Theoretical Computer Science.

[2]  Werner Damm Languages Defined by Higher Type Program Schemes , 1977, ICALP.

[3]  Michael J. Fischer,et al.  Grammars with Macro-Like Productions , 1968, SWAT.

[4]  Chris Hankin,et al.  The theory of strictness analysis for higher order functions , 1985, Programs as Data Objects.

[5]  T. S. E. Maibaum,et al.  A Generalized Approach to Formal Languages , 1974, J. Comput. Syst. Sci..

[6]  Werner Damm,et al.  Combining T and level-N , 1981, MFCS.

[7]  Werner Damm,et al.  Higher Type Recursion and Self-Application as Control Structures , 1977, Formal Description of Programming Concepts.

[8]  Mitchell Wand,et al.  An algebraic formulation of the Chomsky hierarchy , 1974, Category Theory Applied to Computation and Control.

[9]  E. M. Schmidt Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .

[10]  Bruno Courcelle,et al.  Equivalences and Transformations of Regular Systems-Applications to Recursive Program Schemes and Grammars , 1986, Theor. Comput. Sci..

[11]  Irène Guessarian,et al.  Program Transformations and Algebraic Semantics , 1979, Theor. Comput. Sci..

[12]  Max Dauchet,et al.  Un Théorème de Duplication pour les Forêts Algébriques , 1976, J. Comput. Syst. Sci..

[13]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[14]  Werner Damm,et al.  The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..

[15]  Alan Mycroft,et al.  The Theory and Practice of Transforming Call-by-need into Call-by-value , 1980, Symposium on Programming.

[16]  Samson Abramsky,et al.  Strictness analysis and polymorphic invariance , 1985, Programs as Data Objects.

[17]  Max Dauchet,et al.  Forêts Algébriques et Homomorphismes Inverses , 1978, Inf. Control..

[18]  Joost Engelfriet,et al.  IO and OI. I , 1977, J. Comput. Syst. Sci..

[19]  Simon L. Peyton Jones,et al.  Strictness Analysis - A Practical Approach , 1985, FPCA.

[20]  Werner Damm An Algebraic Extension of the Chomsky-Hierarchy , 1979, MFCS.

[21]  Jean H. Gallier n-Rational Algebras I. Basic Properties and Free Algebras , 1984, SIAM J. Comput..

[22]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[23]  Paul Hudak,et al.  Higher-order strictness analysis in untyped lambda calculus , 1986, POPL '86.

[24]  J. Engelfriet,et al.  IO and OI , 1975 .

[25]  André Arnold,et al.  Une Propriété des Forêts Algébriques "de Greibach" , 1980, Inf. Control..

[26]  Joost Engelfriet,et al.  Iterated pushdown automata and complexity classes , 1983, STOC.

[27]  Werner Damm,et al.  An Automata-Theoretical Characterization of the OI-Hierarchy , 1986, Inf. Control..

[28]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[29]  Bernard Leguy,et al.  Grammars Without Erasing Rules - The OI Case , 1981, CAAP.

[30]  Robin Milner,et al.  Fully Abstract Models of Typed lambda-Calculi , 1977, Theor. Comput. Sci..