Multi-compartment microscopic diffusion imaging

This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay.

[1]  Robert P. Carson,et al.  Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin , 2012, Neurobiology of Disease.

[2]  Alex J. de Crespigny,et al.  An approach to high resolution diffusion tensor imaging in fixed primate brain , 2007, NeuroImage.

[3]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[4]  J. Voogd,et al.  The Human Central Nervous System , 1978, Springer Berlin Heidelberg.

[5]  R Mark Henkelman,et al.  Orientational diffusion reflects fiber structure within a voxel , 2002, Magnetic resonance in medicine.

[6]  David J Anderson,et al.  Identification of a Novel Family of Oligodendrocyte Lineage-Specific Basic Helix–Loop–Helix Transcription Factors , 2000, Neuron.

[7]  F. Ståhlberg,et al.  The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study , 2012, NMR in biomedicine.

[8]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[9]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[10]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[11]  D. Grebenkov Use, misuse, and abuse of apparent diffusion coefficients , 2010 .

[12]  R. Luján Fiber Pathways of the Brain, J.D. Schmahmann, D.N. Pandya (Eds.). Oxford University Press (2006), ISBN: 0-19-510423-4 , 2008 .

[13]  W. Denk,et al.  Staining and embedding the whole mouse brain for electron microscopy , 2012, Nature Methods.

[14]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[15]  H. Chugani,et al.  Characteristics of Abnormal Diffusivity in Normal-Appearing White Matter Investigated with Diffusion Tensor MR Imaging in Tuberous Sclerosis Complex , 2007, American Journal of Neuroradiology.

[16]  P. N. Sen,et al.  A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads , 1981 .

[17]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[18]  Eleonora Aronica,et al.  Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex , 2012, Acta Neuropathologica.

[19]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[20]  Bruce Fischl,et al.  Regional white matter volume differences in nondemented aging and Alzheimer's disease , 2009, NeuroImage.

[21]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[22]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[23]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[24]  David J. Kwiatkowski,et al.  Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[26]  Timothy Edward John Behrens,et al.  Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI , 2012, NeuroImage.

[27]  Simon K. Warfield,et al.  Loss of White Matter Microstructural Integrity Is Associated with Adverse Neurological Outcome in Tuberous Sclerosis Complex (S28.003) , 2012 .

[28]  R. Mills,et al.  Self-diffusion in normal and heavy water in the range 1-45.deg. , 1973 .

[29]  Thomas R. Knösche,et al.  Variational inference of the fiber orientation density using diffusion MR imaging , 2008, NeuroImage.

[30]  R. Mayeux,et al.  Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease , 2013, Nature Neuroscience.

[31]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[32]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[33]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[34]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[35]  Frithjof Kruggel,et al.  A Reproducing Kernel Hilbert Space Approach for Q-Ball Imaging , 2011, IEEE Transactions on Medical Imaging.

[36]  D. Kwiatkowski,et al.  Tuberous sclerosis. , 1994, Archives of dermatology.

[37]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[38]  Kathryn L. West,et al.  Hypomyelination following deletion of Tsc2 in oligodendrocyte precursors , 2015, Annals of clinical and translational neurology.

[39]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[40]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[41]  Joanne Chan,et al.  Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System , 2000, Neuron.

[42]  J. Stockman,et al.  Everolimus for Subependymal Giant-Cell Astrocytomas in Tuberous Sclerosis , 2012 .

[43]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[44]  E. Widjaja,et al.  Diffusion Tensor Imaging of Commissural and Projection White Matter in Tuberous Sclerosis Complex and Correlation with Tuber Load , 2010, American Journal of Neuroradiology.

[45]  Frithjof Kruggel,et al.  Nonparametric Bayesian inference of the fiber orientation distribution from diffusion-weighted MR images , 2012, Medical Image Anal..

[46]  Jeroen van der Grond,et al.  Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber in patients with tuberous sclerosis. , 2003, Archives of neurology.

[47]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[48]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[49]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[50]  Robert P. Carson,et al.  Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. , 2013, Human molecular genetics.

[51]  Kathryn L. West,et al.  Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains , 2016, NeuroImage.

[52]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[53]  Mustafa Sahin,et al.  Response of a Neuronal Model of Tuberous Sclerosis to Mammalian Target of Rapamycin (mTOR) Inhibitors: Effects on mTORC1 and Akt Signaling Lead to Improved Survival and Function , 2008, The Journal of Neuroscience.

[54]  G. Sethuraman,et al.  Rapamycin causes regression of astrocytomas in tuberous sclerosis complex , 2006, Annals of neurology.

[55]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[56]  Hui Zhang,et al.  PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study , 2015, Magnetic resonance in medicine.

[57]  Benoit Scherrer,et al.  Loss of white matter microstructural integrity is associated with adverse neurological outcome in tuberous sclerosis complex. , 2012, Academic radiology.

[58]  A. MacKay,et al.  In vivo visualization of myelin water in brain by magnetic resonance , 1994, Magnetic resonance in medicine.

[59]  Michal Neeman,et al.  A simple method for obtaining cross‐term‐free images for diffusion anisotropy studies in NMR microimaging , 1991, Magnetic resonance in medicine.

[60]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[61]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[62]  J. Gore,et al.  Theoretical Model for Water Diffusion in Tissues , 1995, Magnetic resonance in medicine.

[63]  Jan-Mendelt Tillema,et al.  Everolimus alters white matter diffusion in tuberous sclerosis complex , 2012, Neurology.

[64]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[65]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[66]  E. Roach,et al.  Tuberous sclerosis complex. , 2015, Handbook of clinical neurology.

[67]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[68]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[69]  D. Norris,et al.  Biexponential diffusion attenuation in various states of brain tissue: Implications for diffusion‐weighted imaging , 1996, Magnetic resonance in medicine.

[70]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[71]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[72]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[73]  Vincent J Schmithorst,et al.  Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. , 2008, The New England journal of medicine.

[74]  F. Kruggel,et al.  Quantitative mapping of the per‐axon diffusion coefficients in brain white matter , 2015, Magnetic resonance in medicine.