Residual entropy, conditional entropy and subshift covers

We study the existence of subshift covers for topological dynamical systems, the infimum of the entropy jumps to such covers, and various aspects of conditional entropy and covering maps including a variational principle for covering maps. In particular we show every asymptotically h-expansive system (and therefore by Buzzi every C homeomorphism of a compact Riemannian manifold) has a subshift cover of equal entropy. Our arguments in dimension zero are extended to higher dimension with theorems of Kulesza and Thomsen.

[1]  F. Ledrappier A variational principle for the topological conditional entropy , 1979 .

[2]  R. D. Anderson On raising flows and mappings , 1963 .

[3]  Mike Boyle,et al.  Orbit equivalence, flow equivalence and ordered cohomology , 1996 .

[4]  R. Bowen Entropy-expansive maps , 1972 .

[5]  J. Kulesza Zero-dimensional covers of finite dimensional dynamical systems , 1995, Ergodic Theory and Dynamical Systems.

[6]  Wolfgang Krieger,et al.  On the subsystems of topological Markov chains , 1982, Ergodic Theory and Dynamical Systems.

[7]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[8]  Mike Boyle Factoring Factor Maps , 1998 .

[9]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[10]  N. Martin CONTINUITY PROPERTIES OF THE ENTROPY , 1966 .

[11]  Infinite-to-one codes and Markov measures , 1984 .

[12]  K. Sigmund,et al.  Ergodic Theory on Compact Spaces , 1976 .

[13]  Benjamin Weiss,et al.  Quasi-factors of zero-entropy systems , 1995 .

[14]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[15]  B. M. Fulk MATH , 1992 .

[16]  T. Downarowicz,et al.  Fiber entropy and conditional variational principles in compact non-metrizable spaces , 2002 .

[17]  Measures with maximal entropy , 1976 .

[18]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.

[19]  Y. Yomdin Volume growth and entropy , 1987 .

[20]  K. Thomsen The defect of factor maps , 1997, Ergodic Theory and Dynamical Systems.

[21]  Anatole Katok,et al.  On local entropy , 1983 .

[22]  Shift equivalence and the Jordan form away from zero , 1984 .

[23]  The variational principle for the defect of factor maps , 1999 .

[24]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[25]  M. Misiurewicz Topological conditional entropy , 1976 .

[26]  David Fried,et al.  Finitely presented dynamical systems , 1987, Ergodic Theory and Dynamical Systems.

[27]  Mike Boyle Lower entropy factors of sofic systems , 1983 .

[28]  J. Buzzi Intrinsic ergodicity of smooth interval maps , 1997 .

[29]  R. Mañé,et al.  Expansive homeomorphisms and topological dimension , 1979 .

[30]  F. Ledrappier,et al.  A Relativised Variational Principle for Continuous Transformations , 1977 .

[31]  Y. Yomdin Ck-resolution of semialgebraic mappings. Addendum toVolume growth and entropy , 1987 .

[32]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[33]  Bruce Kitchens,et al.  Countable State Markov Shifts , 1998 .

[34]  P. Walters Relative pressure, relative equilibrium states, compensation functions and many-to-one codes between subshifts , 1986 .