Robust Tracking and Geolocation for Wireless Networks in NLOS Environments

We address the problem of robust tracking and geolocation using time of arrival estimates in wireless networks. Especially in urban or indoor environments and hilly terrains, these estimates are often contaminated by interference due to non-line-of-sight (NLOS) propagation. Standard techniques such as least-squares are inadequate as they lead to erroneous position estimates. We propose robust methods for tracking and geolocation based on a semi-parametric approach that does not require specification of the noise density. Unlike conventional, minimax based, robust techniques, we show that our proposed techniques are more robust as they adapt automatically to the interfering environment. Specifically, we propose a robust extended Kalman filter for tracking a mobile terminal based on robust semi-parametric estimators. Numerical studies for different network scenarios illustrate a substantial gain in performance compared to standard robust competitors.

[1]  Anja Klein,et al.  Robust mobile terminal tracking in NLOS environments using interacting multiple model algorithm , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[2]  Ferial El-Hawary,et al.  Robust regression-based EKF for tracking underwater targets , 1995 .

[3]  Richard A. Johnson,et al.  A new family of power transformations to improve normality or symmetry , 2000 .

[4]  Stefan Schaal,et al.  Learning an Outlier-Robust Kalman Filter , 2007, ECML.

[5]  James Stephen Marron,et al.  Transformations in Density Estimation , 1991 .

[6]  J. Holtzman,et al.  The non-line of sight problem in mobile location estimation , 1996, Proceedings of ICUPC - 5th International Conference on Universal Personal Communications.

[7]  Pi-Chun Chen,et al.  A non-line-of-sight error mitigation algorithm in location estimation , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[8]  Giuseppe Thadeu Freitas de Abreu,et al.  Tracking Multiple Dynamic Targets with Multidimensional Scaling , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[9]  Peter Ruckdeschel,et al.  Anszur Robustizierung des , 2001 .

[10]  Álvaro Marco,et al.  Robust Estimator for Non-Line-of-Sight Error Mitigation in Indoor Localization , 2006, EURASIP J. Adv. Signal Process..

[11]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[12]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  N. Draper,et al.  An Alternative Family of Transformations , 1980 .

[15]  J. Collins Robust Estimation of a Location Parameter in the Presence of Asymmetry , 1976 .

[16]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[17]  Shufang Zhang,et al.  Adaptive AR model based robust mobile location estimation approach in NLOS environment , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[18]  Wei-Kai Chao,et al.  Mobile positioning based on TOA/TSOA/TDOA measurements with NLOS error reduction , 2005, 2005 International Symposium on Intelligent Signal Processing and Communication Systems.

[19]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[20]  Zeljko M. Durovic,et al.  Robust estimation with unknown noise statistics , 1999, IEEE Trans. Autom. Control..

[21]  B. Dickinson,et al.  An approach to robust Kalman filtering , 1983, The 22nd IEEE Conference on Decision and Control.

[22]  Robert Piché,et al.  Robust Extended Kalman Filtering in Hybrid Positioning Applications , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[23]  Bor-Sen Chen,et al.  Robust Mobile Location Estimator with NLOS Mitigation using Interacting Multiple Model Algorithm , 2006, IEEE Transactions on Wireless Communications.

[24]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[25]  Abdelhak M. Zoubir,et al.  Bootstrap techniques for signal processing , 2004 .

[26]  Abdelhak M. Zoubir,et al.  Multiuser Detection in Heavy Tailed Noise , 2002, Digit. Signal Process..

[27]  M.N.S. Swamy,et al.  GPS navigation with increased immunity to modeling errors , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[28]  F. Gustafsson,et al.  Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements , 2005, IEEE Signal Processing Magazine.

[29]  Ulrich Hammes,et al.  Transformation-Based Robust Semiparametric Estimation , 2008, IEEE Signal Processing Letters.

[30]  C. Masreliez Approximate non-Gaussian filtering with linear state and observation relations , 1975 .

[31]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[32]  Shing-Chow Chan,et al.  A new robust Kalman filter algorithm under outliers and system uncertainties , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[33]  Konstantinos N. Plataniotis,et al.  Robust estimation of mobile terminal position , 2000 .

[34]  Richard J. Meinhold,et al.  Robustification of Kalman Filter Models , 1989 .

[35]  Wei Guo,et al.  Bootstrapping M-estimators for reducing errors due to non-line-of-sight (NLOS) propagation , 2004, IEEE Communications Letters.

[36]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[37]  Abdelhak M. Zoubir,et al.  An adaptive robust estimator for scale in contaminated distributions , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[38]  A.H. Sayed,et al.  Network-based wireless location: challenges faced in developing techniques for accurate wireless location information , 2005, IEEE Signal Processing Magazine.

[39]  Konstantinos N. Plataniotis,et al.  Data fusion of power and time measurements for mobile terminal location , 2005, IEEE Transactions on Mobile Computing.

[40]  Jean-Yves Tourneret,et al.  Joint Particle Filter and UKF Position Tracking Under Strong NLOS Situation , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[41]  Ulrich Hammes,et al.  Semi-parametric geolocation estimation in NLOS environments , 2008, 2008 16th European Signal Processing Conference.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.