Approximation of Helfrich's Functional via Diffuse Interfaces

We give a rigorous proof of the approximability of the so-called Helfrich's functional via diffuse interfaces under a constraint on the ratio between the bending rigidity and the Gaussian rigidity.

[1]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[2]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[3]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[4]  Roger Moser,et al.  A Higher Order Asymptotic Problem Related to Phase Transitions , 2005, SIAM J. Math. Anal..

[5]  Yoshihiro Tonegawa,et al.  A singular perturbation problem with integral curvature bound , 2007 .

[6]  M. Kozlov,et al.  The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. , 2004, Biophysical journal.

[7]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[8]  R. Templer,et al.  Gaussian curvature modulus of an amphiphilic monolayer , 1998 .

[9]  Alexander G. Petrov The Lyotropic State of Matter: Molecular Physics and Living Matter Physics , 1999 .

[10]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[11]  Rafe Mazzeo,et al.  The moduli space of complete embedded constant mean curvature surfaces , 1994 .

[12]  Qiang Du,et al.  Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .

[13]  Y. Tonegawa On Stable Critical Points for a Singular Perturbation Problem , 2003 .

[14]  Klaus Kassner,et al.  Phase-field approach to three-dimensional vesicle dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Garcke,et al.  Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biomembranes , 2010 .

[16]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[17]  M. Peletier,et al.  Partial Localization, Lipid Bilayers, and the Elastica Functional , 2006, math-ph/0607024.

[18]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[19]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[20]  D. Boal Mechanics of the Cell: Membranes , 2012 .

[21]  P. Padilla,et al.  On the convergence of stable phase transitions , 1998 .

[22]  Xiaoqiang Wang,et al.  Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models , 2008, SIAM J. Math. Anal..

[23]  H. Garcke,et al.  Universität Regensburg Mathematik Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biological membranes , 2009 .

[24]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[25]  R. Schätzle Hypersurfaces with mean Curvature given by an Ambient Sobolev Function , 2001 .

[26]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[27]  F. Campelo,et al.  Dynamic model and stationary shapes of fluid vesicles , 2006, The European physical journal. E, Soft matter.

[28]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[29]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[30]  S. Delladio Special generalized Gauss graphs and their application to minimization of functional involving curvatures. , 1997 .

[31]  Qiang Du,et al.  DIFFUSE INTERFACE ENERGIES CAPTURING THE EULER NUMBER: RELAXATION AND RENOMALIZATION ∗ , 2007 .

[32]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[33]  Carlo Mantegazza,et al.  Curvature varifolds with boundary , 1996 .

[34]  R. Moser Max-Planck-Institut fur Mathematik in den Naturwissenschaften Leipzig , 2001 .

[35]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[36]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[37]  E. D. Giorgi,et al.  Some remarks on Γ-convergence and least squares method , 1991 .

[38]  M. Ben Amar,et al.  Budding and fission of a multiphase vesicle , 2005, The European physical journal. E, Soft matter.

[39]  G. Bellettini,et al.  On the approximation of the elastica functional in radial symmetry , 2005 .

[40]  Andrea Braides Γ-convergence for beginners , 2002 .

[41]  Karsten Große-Brauckmann,et al.  New surfaces of constant mean curvature , 1993 .

[42]  F. Campelo,et al.  Shape instabilities in vesicles: A phase-field model , 2007, 0705.2711.