Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites

Abstract Nanostructured modification of polymers has opened up new perspectives for multi-functional materials. In particular, carbon nanotubes (CNTs) have the potential to realise electrically conductive polymers with improved or retaining mechanical performance. This study focuses on the evaluation of both, the electrical and thermal conductivity of nanoparticulate filled epoxy resins. We discuss the results with regard to the influence of the type of carbon nanotube (SWCNT, DWCNT and MWCNT), the relevance of surface-functionalisation (amino-functionalisation), the influence of filler content (wt% and vol%), the varying dispersibility, the aspect ratio and the specific surface area.

[1]  Jae Ryoun Youn,et al.  Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites , 2005 .

[2]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[3]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[4]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[5]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[6]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[7]  K. Schulte,et al.  Electrically conductive glass fibre reinforced epoxy resin , 1998 .

[8]  A. Rousset,et al.  Specific surface area of carbon nanotubes and bundles of carbon nanotubes , 2001 .

[9]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[10]  M. Grimsditch,et al.  Advantages of ultraviolet Raman scattering for high temperature investigations , 1998 .

[11]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[12]  Karl Schulte,et al.  Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin , 1997 .

[13]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[15]  Patrice Chantrenne,et al.  Analytical model for the thermal conductivity of nanostructures , 2004 .

[16]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[17]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[18]  Christian A. Martin,et al.  Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites , 2005 .

[19]  S. Kirkpatrick Percolation and Conduction , 1973 .

[20]  L. Flandin,et al.  In situ observation of electric field induced agglomeration of carbon black in epoxy resin , 1998 .

[21]  Christian A. Martin,et al.  Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites , 2004 .

[22]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[23]  Munson-McGee,et al.  Estimation of the critical concentration in an anisotropic percolation network. , 1991, Physical review. B, Condensed matter.

[24]  Alan H. Windle,et al.  Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites , 2006 .

[25]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[26]  Paul J. Sellin,et al.  Thermal and electrical transport in multi-walled carbon nanotubes , 2004 .

[27]  M. Taya,et al.  Thermal Diffusivities of Composites with Various Types of Filler , 1992 .

[28]  J. Loos,et al.  Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. , 2005, Ultramicroscopy.

[29]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[30]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[31]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[32]  A. Celzard,et al.  Critical concentration in percolating systems containing a high-aspect-ratio filler. , 1996, Physical review. B, Condensed matter.