Nearly copropagating sheared laser pulse FEL undulator for soft x-rays

A conceptual design for a soft x-ray free-electron laser (FEL) using a short-pulsed, high energy near infrared laser undulator and a low-emittance modest-energy (?170?MeV) electron beam is described. This low-cost design uses the laser undulator beam in a nearly copropagating fashion with respect to the electron beam, instead of the traditional ?head-on? fashion. The nearly copropagating geometry reduces the Doppler shift of scattered radiation to yield soft, rather than hard x-rays. To increase the FEL gain a sheared laser pulse from a Ti?:?sapphire or other broadband laser is used to extend the otherwise short interaction time of the nearly copropagating laser undulator beam with a relativistic electron beam.

[1]  Colson,et al.  Angular-gain spectrum of free-electron lasers. , 1985, Physical review. A, General physics.

[2]  David Garzella,et al.  Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light , 2008 .

[3]  Ming Xie,et al.  Exact and variational solutions of 3D Eigenmodes in high gain FELs , 1999 .

[4]  D. Gordon,et al.  Requirements for a laser pumped FEL operating in the X-ray regime , 2001 .

[5]  J. Madey,et al.  The Compton backscattering process and radiotherapy. , 1997, Medical physics.

[6]  Luca Serafini,et al.  Ultrahigh brightness electron beams by plasma-based injectors for driving all-optical free-electron lasers , 2008 .

[7]  R. Palmer,et al.  Theory of a free-electron laser with a Gaussian optical undulator , 1988 .

[8]  Jason Corliss,et al.  First results from an all-reflection spatial heterodyne spectrometer with broad spectral coverage. , 2010, Optics express.

[9]  H. Wiedemann Particle accelerator physics , 1993 .

[10]  M. Levine,et al.  High Energy Gamma Ray Beams from Compton Backscattered Laser Light , 1983, IEEE Transactions on Nuclear Science.

[11]  M. Cola,et al.  Experimental requirements for X-ray compact free electron lasers with a laser wiggler , 2007 .

[12]  Jun Ye,et al.  Direct frequency comb spectroscopy in the extreme ultraviolet , 2011, Nature.

[13]  Richard H. Milburn,et al.  ELECTRON SCATTERING BY AN INTENSE POLARIZED PHOTON FIELD , 1963 .

[14]  Robert L. Byer,et al.  Proposed dielectric-based microstructure laser-driven undulator , 2008 .

[15]  Pellegrini,et al.  A proposed dielectric-loaded resonant laser accelerator. , 1995, Physical review letters.

[16]  Dong Eon Kim,et al.  Generation of a few femtosecond keV x-ray pulse via interaction of a tightly focused laser copropagating with a relativistic electron bunch , 2010 .

[17]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[18]  Zhirong Huang,et al.  A review of x-ray free-electron laser theory. , 2007 .

[19]  G. Dattoli,et al.  FEL SASE and wave undulators , 2012 .

[20]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[21]  Oide,et al.  Beam-beam collision scheme for storage-ring colliders. , 1989, Physical review. A, General physics.

[22]  John M. J. Madey,et al.  First Operation of a Free-Electron Laser , 1977 .

[23]  W. Colson Tutorial on classical free electron laser theory , 1985 .

[24]  Benjamin Gilbert,et al.  Feasibility tests of transmission x-ray photoelectron emission microscopy of wet samples , 2000 .

[25]  Wurtele,et al.  Optical guiding in a free-electron laser. , 1984, Physical review letters.

[26]  Sami G. Tantawi,et al.  An Analytical Design and Analysis Method for a High-Power Circular to Rectangular Waveguide Mode Converter and Its Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[27]  L. Federici,et al.  Backward Compton scattering of laser light against high-energy electrons: the LADON photon beam at Frascati , 1980 .

[28]  Michael Bussmann,et al.  Traveling-wave Thomson scattering and optical undulators for high-yield EUV and X-ray sources , 2010 .

[29]  M. Furman,et al.  Erratum: Electric field of a 2D elliptical charge distribution inside a cylindrical conductor [Phys. Rev. ST Accel. Beams 10, 081001 (2007)] , 2007 .

[30]  Bert Claessens,et al.  Ultracold Electron Sources , 2007 .

[31]  Fred L. Roesler,et al.  Spatial heterodyne spectroscopy: a novel interferometric technique for ground-based and space astronomy , 1990, Astronomical Telescopes and Instrumentation.

[32]  R. Byer,et al.  Photonic-based laser driven electron beam deflection and focusing structures , 2009 .

[33]  C. Pellegrini The Next Generation of X-ray Sources , 2010 .

[34]  Bahman Hafizi,et al.  Laser-pumped coherent x-ray free-electron laser , 2009 .

[35]  John M. J. Madey,et al.  A Free Electron Laser , 1973 .

[36]  L. Serafini,et al.  Erratum: Ultrahigh brightness electron beams by plasma-based injectors for driving all-optical free-electron lasers [Phys. Rev. ST Accel. Beams 11, 070703 (2008)] , 2008 .

[37]  Hans M. Hertz,et al.  Debris-free Single-line Laser-plasma X-ray Source For Microscopy , 1995 .

[38]  Vernon Barger,et al.  Classical electricity and magnetism , 1987 .