Ground-State Structure of the Proton-Bound Formate Dimer by Cold-Ion Infrared Action Spectroscopy.

The proton-bound dicarboxylate motif, RCOO- ⋅H+ ⋅- OOCR, is a prevalent chemical configuration found in many condensed-phase systems. The proton-bound formate dimer HCOO- ⋅H+ ⋅- OOCH was studied utilizing cold-ion IR action spectroscopy in the range 400-1800 cm-1 . The spectrum obtained at ca. 0.4 K of ions captured in He nanodroplets was compared to that measured at ca. 10 K by photodissociation of Ar-ion complexes. Similar band patterns are obtained by the two techniques that are consistent with calculations for a C2 symmetry structure with a proton shared equally between the two formate moieties. Isotopic substitution experiments point to the nominal parallel stretch of the bridging proton appearing as a sharp, dominant feature near 600 cm-1 . Multidimensional anharmonic calculations reveal that the bridging proton motion is strongly coupled to the flanking -COO- framework, an effect that is in line with the expected change in -C=O bond rehybridization upon protonation.

[1]  Wieland Schöllkopf,et al.  Fingerabdrücke für Glykane durch Spektroskopie kalter Ionen , 2017 .

[2]  Weston B Struwe,et al.  Glycan Fingerprinting via Cold-Ion Infrared Spectroscopy. , 2017, Angewandte Chemie.

[3]  E. Pozharski,et al.  Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons. , 2017, Biochemistry.

[4]  Kenneth D. Jordan,et al.  Spectroscopic snapshots of the proton-transfer mechanism in water , 2016, Science.

[5]  Wieland Schöllkopf,et al.  Ladungsinduziertes Entwinden isolierter Proteine zu einer definierten Sekundärstruktur , 2016 .

[6]  K. Pagel,et al.  Charge‐Induced Unzipping of Isolated Proteins to a Defined Secondary Structure , 2016, Angewandte Chemie.

[7]  Mark A. Johnson,et al.  Diffuse Vibrational Signature of a Single Proton Embedded in the Oxalate Scaffold, HO2CCO2(-). , 2015, The journal of physical chemistry. A.

[8]  J. Kuo,et al.  Strong Quantum Coupling in the Vibrational Signatures of a Symmetric Ionic Hydrogen Bond: The Case of (CH3OH)2H(.). , 2015, The journal of physical chemistry. A.

[9]  S. Gewinner,et al.  IR spectroscopy of protonated leu-enkephalin and its 18-crown-6 complex embedded in helium droplets. , 2015, Physical chemistry chemical physics : PCCP.

[10]  Mark A. Johnson,et al.  Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H(+)(H2O)(n=2-28) Clusters. , 2015, The journal of physical chemistry. A.

[11]  K. Asmis,et al.  Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry , 2015 .

[12]  Mark A. Johnson,et al.  Communication: He-tagged vibrational spectra of the SarGlyH⁺ and H⁺(H₂O)(2,3) ions: quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy. , 2014, The Journal of chemical physics.

[13]  D. Neumark,et al.  Infrared photodissociation spectroscopy of microhydrated nitrate-nitric acid clusters NO3(-)(HNO3)(m)(H2O)(n). , 2014, The journal of physical chemistry. A.

[14]  Mark A. Johnson,et al.  Cryogenic ion chemistry and spectroscopy. , 2014, Accounts of chemical research.

[15]  G. Meijer,et al.  Photoexcitation of mass/charge selected hemin+, caught in helium nanodroplets. , 2012, Physical chemistry chemical physics : PCCP.

[16]  L. González,et al.  IR spectrum of FHF- and FDF- revisited using a spectral method in four dimensions. , 2012, The journal of physical chemistry. A.

[17]  R. Rogers,et al.  Demonstration of chemisorption of carbon dioxide in 1,3-dialkylimidazolium acetate ionic liquids. , 2011, Angewandte Chemie.

[18]  Andrew F. DeBlase,et al.  Unraveling the Anomalous Solvatochromic Response of the Formate Ion Vibrational Spectrum: An Infrared, Ar-Tagging Study of the HCO2¯, DCO2¯, and HCO2¯·H2O Ions , 2011 .

[19]  Mark A. Johnson,et al.  Vibrational predissociation spectroscopy of the H2-tagged mono- and dicarboxylate anions of dodecanedioic acid , 2011 .

[20]  R. Rogers,et al.  Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes. , 2011, Chemical communications.

[21]  K. Asmis,et al.  Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4(+)(NH3)(1-4). , 2008, The Journal of chemical physics.

[22]  Mark A. Johnson,et al.  An H/D isotopic substitution study of the H5O2+.Ar vibrational predissociation spectra: exploring the putative role of Fermi resonances in the bridging proton fundamentals. , 2008, The journal of physical chemistry. B.

[23]  Mark A. Johnson,et al.  Gas-phase infrared spectroscopy and multidimensional quantum calculations of the protonated ammonia dimer N2H7+. , 2007, Angewandte Chemie.

[24]  Knut R. Asmis,et al.  Gasphasen‐Infrarotspektroskopie und mehrdimensionale quantenmechanische Rechnungen zum protonierten Ammoniakdimer N2H7+ , 2007 .

[25]  J. Roscioli,et al.  Quantum Structure of the Intermolecular Proton Bond , 2007, Science.

[26]  T. Carrington,et al.  Discrete‐Variable Representations and their Utilization , 2007 .

[27]  Mark A. Johnson,et al.  Fundamental excitations of the shared proton in the H3O2- and H5O2+ complexes. , 2005, The journal of physical chemistry. A.

[28]  J. Oomens,et al.  Probing the vibrations of shared, OH+O-bound protons in the gas phase. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  Edward F. Valeev,et al.  Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer , 2002 .

[30]  Marvin Johnson,et al.  Double-contact ion-molecule binding: Infrared characterization of the ionic H bonds to formic acid in the I−⋅HCOOH complex , 2000 .

[31]  Trygve Helgaker,et al.  Basis-set convergence of the energy in molecular Hartree–Fock calculations , 1999 .

[32]  I. Reva,et al.  The IR spectrum of formic acid in an argon matrix , 1994 .

[33]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[34]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[35]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[36]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[37]  K. Kawaguchi,et al.  Diode laser spectroscopy of the ν3 and ν2 bands of FHF− in 1300 cm−1 region , 1987 .

[38]  K. Kawaguchi,et al.  Infrared diode laser study of the hydrogen bifluoride anion: FHF− and FDF− , 1986 .

[39]  G. Pimentel The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method , 1951 .

[40]  R. Bell The occurrence and properties of molecular vibrations with V(x) = ax4 , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[42]  S. Rice,et al.  ADVANCES IN CHEMICAL PHYSICS , 2002 .