Short-term plasticity at the calyx of held

[1]  B. Sakmann,et al.  Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. , 1997, Biophysical journal.

[2]  J. Guinan,et al.  Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat , 1990, Hearing Research.

[3]  B. Sakmann,et al.  Facilitation of presynaptic calcium currents in the rat brainstem , 1998, The Journal of physiology.

[4]  S. Iwasaki,et al.  Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem , 2001, The Journal of physiology.

[5]  A. Burkitt,et al.  Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat , 2001, Hearing Research.

[6]  T. Yin,et al.  Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. , 1998, Journal of neurophysiology.

[7]  R. Keep,et al.  Brain interstitial fluid calcium concentration during development in the rat: control levels and changes in acute plasma hypercalcaemia. , 1988, Physiologia Bohemoslovaca.

[8]  R. Silver,et al.  Locus of frequency‐dependent depression identified with multiple‐probability fluctuation analysis at rat climbing fibre‐Purkinje cell synapses , 1998, The Journal of physiology.

[9]  E. Neher,et al.  Quantitative Relationship between Transmitter Release and Calcium Current at the Calyx of Held Synapse , 2001, The Journal of Neuroscience.

[10]  E Neher,et al.  Preferential potentiation of fast-releasing synaptic vesicles by cAMP at the calyx of Held. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Marty,et al.  Quantal currents at single‐site central synapses , 2000, The Journal of physiology.

[12]  Alex M. Thomson,et al.  Molecular frequency filters at central synapses , 2000, Progress in Neurobiology.

[13]  L. Trussell,et al.  Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse , 2001, Nature.

[14]  R. Schmidt,et al.  Presynaptic inhibition in the vertebrate spinal cord revisited , 1999, Experimental Brain Research.

[15]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[16]  R. Llinás The Squid Giant Synapse: A Model for Chemical Transmission , 1999 .

[17]  H. von Gersdorff,et al.  Noradrenaline increases high-frequency firing at the calyx of Held synapse during development by inhibiting glutamate release. , 2002, Journal of neurophysiology.

[18]  W. Kloot,et al.  Quantal acetylcholine release at the vertebrate neuromuscular junction. , 1994, Physiological reviews.

[19]  B. Katz,et al.  The role of calcium in neuromuscular facilitation , 1968, The Journal of physiology.

[20]  G. Spirou,et al.  Specialized Synapse-Associated Structures within the Calyx of Held , 2000, The Journal of Neuroscience.

[21]  C. E. Molnar,et al.  Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus , 1968 .

[22]  B Sakmann,et al.  Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  P. H. Smith,et al.  Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  D. Sanes An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  I. Forsythe,et al.  Presynaptic Calcium Current Modulation by a Metabotropic Glutamate Receptor , 1996, Science.

[26]  Xin-sheng Wu,et al.  Protein Kinase C Increases the Apparent Affinity of the Release Machinery to Ca2+ by Enhancing the Release Machinery Downstream of the Ca2+ Sensor , 2001, The Journal of Neuroscience.

[27]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[28]  D. Tank,et al.  Action potentials reliably invade axonal arbors of rat neocortical neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[30]  Donata Oertel,et al.  Maturation of synapses and electrical properties of cells in the cochlear nuclei , 1987, Hearing Research.

[31]  B Sakmann,et al.  Postsynaptic Ca2+ Influx Mediated by Three Different Pathways during Synaptic Transmission at a Calyx-Type Synapse , 1998, The Journal of Neuroscience.

[32]  R. Zucker,et al.  Role of presynaptic calcium ions and channels in synaptic facilitation and depression at the squid giant synapse. , 1982, The Journal of physiology.

[33]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[34]  D. Faber,et al.  The one-vesicle hypothesis and multivesicular release. , 1994, Advances in second messenger and phosphoprotein research.

[35]  S. Cajal Neuron theory or reticular theory? Objective evidence of the anatomical unity of nerve cells. , 1954 .

[36]  B. Walmsley,et al.  Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat , 1998, The Journal of physiology.

[37]  R. Delgado,et al.  Size of Vesicle Pools, Rates of Mobilization, and Recycling at Neuromuscular Synapses of a Drosophila mutant, shibire , 2000, Neuron.

[38]  Y. Kajikawa,et al.  The role of GTP-binding protein activity in fast central synaptic transmission. , 2000, Science.

[39]  M B Jackson,et al.  Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Knöpfel,et al.  Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat , 1999, The Journal of comparative neurology.

[41]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[42]  D. McCormick,et al.  Synaptojanin 1 Contributes to Maintaining the Stability of GABAergic Transmission in Primary Cultures of Cortical Neurons , 2001, The Journal of Neuroscience.

[43]  R. Nicoll,et al.  Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses , 2001, Nature.

[44]  Y. Kajikawa,et al.  GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Jahr,et al.  Multivesicular Release at Climbing Fiber-Purkinje Cell Synapses , 2001, Neuron.

[46]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[47]  I. Forsythe,et al.  Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem , 1998, The Journal of physiology.

[48]  D. Brody,et al.  Release-Independent Short-Term Synaptic Depression in Cultured Hippocampal Neurons , 2000, The Journal of Neuroscience.

[49]  L. Trussell,et al.  Long-Term Specification of AMPA Receptor Properties after Synapse Formation , 2000, The Journal of Neuroscience.

[50]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[51]  L. Trussell,et al.  Maturation of Synaptic Transmission at End-Bulb Synapses of the Cochlear Nucleus , 2001, The Journal of Neuroscience.

[52]  C. Stevens,et al.  Facilitation and depression at single central synapses , 1995, Neuron.

[53]  H. von Gersdorff,et al.  Fine-Tuning an Auditory Synapse for Speed and Fidelity: Developmental Changes in Presynaptic Waveform, EPSC Kinetics, and Synaptic Plasticity , 2000, The Journal of Neuroscience.

[54]  Alexander M Aravanis,et al.  Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling , 2001, Trends in Neurosciences.

[55]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[56]  E Neher,et al.  Properties of a model of Ca++-dependent vesicle pool dynamics and short term synaptic depression. , 1999, Biophysical journal.

[57]  M. Eybalin,et al.  Glutamate receptor phenotypes in the auditory brainstem and mid‐brain of the developing rat , 1999, The European journal of neuroscience.

[58]  E. Friauf,et al.  Pre‐ and postnatal development of efferent connections of the cochlear nucleus in the rat , 1993, The Journal of comparative neurology.

[59]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[60]  Thomas J. Carew,et al.  Multiple overlapping processes underlying short-term synaptic enhancement , 1997, Trends in Neurosciences.

[61]  Andrei Rozov,et al.  Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression , 1999, Nature.

[62]  I. Forsythe,et al.  Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. , 1994, The Journal of physiology.

[63]  T. Ishikawa,et al.  Mechanisms underlying presynaptic facilitatory effect of cyclothiazide at the calyx of Held of juvenile rats , 2001, The Journal of physiology.

[64]  A. C. Meyer,et al.  Estimation of Quantal Size and Number of Functional Active Zones at the Calyx of Held Synapse by Nonstationary EPSC Variance Analysis , 2001, The Journal of Neuroscience.

[65]  A. W. Liley,et al.  An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. , 1953, Journal of neurophysiology.

[66]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[67]  Charles F Stevens,et al.  Activity-Dependent Modulation of the Rate at which Synaptic Vesicles Become Available to Undergo Exocytosis , 1998, Neuron.

[68]  A. C. Meyer,et al.  Released Fraction and Total Size of a Pool of Immediately Available Transmitter Quanta at a Calyx Synapse , 1999, Neuron.

[69]  Leonard K. Kaczmarek,et al.  High-frequency firing helps replenish the readily releasable pool of synaptic vesicles , 1998, Nature.

[70]  S. Iwasaki,et al.  Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem , 1998, The Journal of physiology.

[71]  B. Walmsley,et al.  Diversity of structure and function at mammalian central synapses , 1998, Trends in Neurosciences.

[72]  E. Fortune,et al.  Short-term synaptic plasticity as a temporal filter , 2001, Trends in Neurosciences.

[73]  F. D. da Silva,et al.  Activity‐dependent neurotransmitter release kinetics: correlation with changes in morphological distributions of small and large vesicles in central nerve terminals , 1999, The European journal of neuroscience.

[74]  T. Ishikawa Does a single packet of glutamate saturate postsynaptic AMPA receptors at the calyx of Held synapse , 2000 .

[75]  E. Friauf,et al.  Distribution of the calcium‐binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats , 1996, The Journal of comparative neurology.

[76]  B. Sakmann,et al.  Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex , 2000, The Journal of physiology.

[77]  T. Yin,et al.  Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. , 1998, Journal of neurophysiology.

[78]  E. Neher,et al.  Presynaptic Depression at a Calyx Synapse: The Small Contribution of Metabotropic Glutamate Receptors , 1997, The Journal of Neuroscience.

[79]  D. Faber,et al.  Properties and Plasticity of Paired-Pulse Depression at a Central Synapse , 2000, The Journal of Neuroscience.

[80]  J. Borst,et al.  The Reduced Release Probability of Releasable Vesicles during Recovery from Short-Term Synaptic Depression , 1999, Neuron.

[81]  W. Regehr,et al.  Contributions of Residual Calcium to Fast Synaptic Transmission , 1999, The Journal of Neuroscience.

[82]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[83]  B. Sakmann,et al.  Depletion of calcium in the synaptic cleft of a calyx‐type synapse in the rat brainstem , 1999, The Journal of physiology.

[84]  C E Carr,et al.  Processing of temporal information in the brain. , 1993, Annual review of neuroscience.

[85]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[86]  L. Trussell,et al.  Minimizing Synaptic Depression by Control of Release Probability , 2001, The Journal of Neuroscience.

[87]  K. Futai,et al.  High-Fidelity Transmission Acquired via a Developmental Decrease in NMDA Receptor Expression at an Auditory Synapse , 2001, The Journal of Neuroscience.

[88]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[89]  L. Trussell,et al.  Voltage clamp analysis of excitatory synaptic transmission in the avian nucleus magnocellularis. , 1994, The Journal of physiology.

[90]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[91]  D. K. Morest,et al.  The growth of synaptic endings in the mammalian brain: A study of the calyces of the trapezoid body , 1968, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[92]  J. Isaacson,et al.  GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. , 1998, Journal of neurophysiology.

[93]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[94]  George J. Augustine,et al.  Adaptation of Ca2+-Triggered Exocytosis in Presynaptic Terminals , 1996, Neuron.

[95]  E. Neher,et al.  Calmodulin Mediates Rapid Recruitment of Fast-Releasing Synaptic Vesicles at a Calyx-Type Synapse , 2001, Neuron.

[96]  D. Debanne,et al.  Action-potential propagation gated by an axonal IA-like K+ conductance in hippocampus , 1997, Nature.

[97]  E. Neher,et al.  Combining Deconvolution and Noise Analysis for the Estimation of Transmitter Release Rates at the Calyx of Held , 2001, The Journal of Neuroscience.

[98]  P. Monsivais,et al.  Processing of interaural intensity differences in the LSO: role of interaural threshold differences. , 1997, Journal of neurophysiology.

[99]  M. Mayer,et al.  AMPA Receptor Flip/Flop Mutants Affecting Deactivation, Desensitization, and Modulation by Cyclothiazide, Aniracetam, and Thiocyanate , 1996, The Journal of Neuroscience.

[100]  L. Stjärne Molecular and cellular mechanisms of neurotransmitter release , 1994 .

[101]  Ling-gang Wu,et al.  Fast Kinetics of Exocytosis Revealed by Simultaneous Measurements of Presynaptic Capacitance and Postsynaptic Currents at a Central Synapse , 2001, Neuron.

[102]  J. Kelly,et al.  Response of neurons in the lateral superior olive and medial nucleus of the trapezoid body to repetitive stimulation: Intracellular and extracellular recordings from mouse brain slice , 1993, Hearing Research.

[103]  H. Ohmori,et al.  Postnatal Development of Phase-Locked High-Fidelity Synaptic Transmission in the Medial Nucleus of the Trapezoid Body of the Rat , 1998, The Journal of Neuroscience.

[104]  B. Sakmann,et al.  Calcium influx and transmitter release in a fast CNS synapse , 1996, Nature.

[105]  B Sakmann,et al.  Calcium Channel Types with Distinct Presynaptic Localization Couple Differentially to Transmitter Release in Single Calyx-Type Synapses , 1999, The Journal of Neuroscience.

[106]  G. Matthews,et al.  Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released , 1996, Neuron.

[107]  L. Landmesser,et al.  The onset and development of transmission in the chick ciliary ganglion , 1972, The Journal of physiology.

[108]  B Sakmann,et al.  R-type Ca2+ currents evoke transmitter release at a rat central synapse. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[109]  G. Spirou,et al.  Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. , 1990, Journal of neurophysiology.

[110]  L. Trussell,et al.  Synaptic mechanisms for coding timing in auditory neurons. , 1999, Annual review of physiology.

[111]  K. Koyano,et al.  Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat , 2001, The Journal of physiology.

[112]  T. Reese,et al.  The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. , 1966, The American journal of anatomy.

[113]  H. Monyer,et al.  A molecular determinant for submillisecond desensitization in glutamate receptors. , 1994, Science.

[114]  Lu-Yang Wang,et al.  The Dynamic Range for Gain Control of NMDA Receptor-Mediated Synaptic Transmission at a Single Synapse , 2000, The Journal of Neuroscience.

[115]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[116]  M. Semple,et al.  Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus. , 2001, Journal of neurophysiology.

[117]  I. Forsythe,et al.  Pre‐ and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. , 1995, The Journal of physiology.

[118]  P X Joris,et al.  Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. , 1994, Journal of neurophysiology.