Optimal Error Estimates of the Chebyshev-Legendre Spectral Method for Solving the Generalized Burgers Equation

In this paper the Chebyshev--Legendre collocation method is applied to the generalized Burgers equation. Optimal error estimate of the method is proved for the problem with the Dirichlet boundary conditions. Also, a Legendre--Galerkin--Chebyshev collocation method is given for the generalized Burgers equation. The scheme is basically formulated in the Legendre spectral form but with the nonlinear term being treated by the Chebyshev collocation method so that the scheme can be implemented at Chebyshev--Gauss--Lobatto points efficiently. Optimal order convergence is also obtained through coupling estimates in the L2 -norm and the H1 -norm.

[1]  Heping Ma,et al.  Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .

[2]  Jie Shen,et al.  Efficient Spectral-Galerkin Methods III: Polar and Cylindrical Geometries , 1997, SIAM J. Sci. Comput..

[3]  Guo Ben-yu,et al.  The Chebyshev spectral method for Burgers-like equations , 1988 .

[4]  Jan S. Hesthaven,et al.  Integration Preconditioning of Pseudospectral Operators. I. Basic Linear Operators , 1998 .

[5]  Alfio Quarteroni,et al.  An implicit/explicit spectral method for Burgers' equation , 1986 .

[6]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[7]  Jie Shen,et al.  E-cient Chebyshev-Legendre Galerkin Methods for Elliptic Problems , 1996 .

[8]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[9]  E Weinan Convergence of spectral methods for Burgers' equation , 1992 .

[10]  Heping Ma,et al.  The Legendre Galerkin–Chebyshev collocation method for Burgers‐like equations , 2003 .

[11]  Alfio Quarteroni,et al.  Legendre and Chebyshev spectral approximations of Burgers' equation , 1981 .

[12]  Seymour V. Parter,et al.  Preconditioning Chebyshev Spectral Collocation Method for Elliptic Partial Differential Equations , 1996 .

[13]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[14]  Seymour V. Parter,et al.  Preconditioning Chebyshev Spectral Collocation by Finite-Difference Operators , 1997 .

[15]  Luis G. Reyna,et al.  L2 estimates for Chebyshev collocation , 1988, J. Sci. Comput..

[16]  Y. Maday,et al.  Approximation of Burgers' equation by pseudo-spectral methods , 1982 .

[17]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[18]  N. SIAMJ.,et al.  CHEBYSHEV – LEGENDRE SPECTRAL VISCOSITY METHOD FOR NONLINEAR CONSERVATION LAWS , 1998 .

[19]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[20]  Alfio Quarteroni,et al.  Finite element preconditioning for legendre spectral collocation approximations to elliptic equations and systems , 1992 .

[21]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[22]  Daniele Funaro,et al.  Domain decomposition methods for pseudo spectral approximations , 1987 .