Array programming with NumPy
暂无分享,去创建一个
K. Jarrod Millman | Travis E. Oliphant | Pearu Peterson | Christoph Gohlke | Sebastian Berg | Kevin Sheppard | Hameer Abbasi | Matti Picus | Charles R. Harris | Warren Weckesser | Mark Wiebe | Julian Taylor | Ralf Gommers | David Cournapeau | Nathaniel J. Smith | Pauli Virtanen | St'efan J. van der Walt | Eric Wieser | Robert Kern | Stephan Hoyer | Marten H. van Kerkwijk | Matthew Brett | Allan Haldane | Jaime Fern'andez del R'io | Pierre G'erard-Marchant | Tyler Reddy | K. Millman | D. Cournapeau | T. Oliphant | Pearu Peterson | Stephan Hoyer | Warren Weckesser | S. Walt | M. Brett | A. Haldane | Charles R. Harris | R. Gommers | Pauli Virtanen | Eric Wieser | Julian Taylor | Sebastian Berg | Nathaniel J. Smith | Robert Kern | Matti Picus | M. V. Kerkwijk | Marcy Wiebe | Pierre G'erard-Marchant | Kevin Sheppard | Tyler Reddy | Hameer Abbasi | C. Gohlke
[1] Kenneth E. Iverson,et al. A programming language , 1899, AIEE-IRE '62 (Spring).
[2] Kenneth E. Iverson,et al. Notation as a tool of thought , 1980, APLQ.
[3] D. Munro. Using the Yorick interpreted language , 1995 .
[4] Konrad Hinsen,et al. Numerical Python , 1996 .
[5] Ross Ihaka,et al. Gentleman R: R: A language for data analysis and graphics , 1996 .
[6] Paul F. Dubois,et al. Steering object-oriented scientific computations , 1997, Proceedings of TOOLS USA 97. International Conference on Technology of Object Oriented Systems and Languages.
[7] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[8] Yannis Manolopoulos,et al. The BASIS System: A Benchmarking Approach for Spatial Index Structures , 1999, Spatio-Temporal Database Management.
[9] G. Marsaglia,et al. The Ziggurat Method for Generating Random Variables , 2000 .
[10] Richard L. White,et al. numarray : A New Scientific Array Package for Python , 2003 .
[11] Vikram S. Adve,et al. LLVM: a compilation framework for lifelong program analysis & transformation , 2004, International Symposium on Code Generation and Optimization, 2004. CGO 2004..
[12] Greg Wilson,et al. Software Carpentry: Getting Scientists to Write Better Code by Making Them More Productive , 2006, Computing in Science & Engineering.
[13] Leonid Ryzhyk,et al. The ARM Architecture , 2006 .
[14] K. Jarrod Millman,et al. Analysis of Functional Magnetic Resonance Imaging in Python , 2007, Computing in Science & Engineering.
[15] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[16] Paul F. Dubois,et al. Guest Editor's Introduction: Python: Batteries Included , 2007, Computing in Science & Engineering.
[17] Paul F. D Ubois. Python: Batteries Included , 2007 .
[18] Travis E. Oliphant,et al. Python for Scientific Computing , 2007, Computing in Science & Engineering.
[19] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[20] Aric Hagberg,et al. Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.
[21] Gene H. Golub,et al. Netlib and NA-Net: Building a Scientific Computing Community , 2008, IEEE Annals of the History of Computing.
[22] David Goldsmith,et al. Progress Report: NumPy and SciPy Documentation in 2009 , 2009 .
[23] Pearu Peterson,et al. F2PY: a tool for connecting Fortran and Python programs , 2009, Int. J. Comput. Sci. Eng..
[24] Bartek Wilczynski,et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..
[25] Janice Singer,et al. How do scientists develop and use scientific software? , 2009, 2009 ICSE Workshop on Software Engineering for Computational Science and Engineering.
[26] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[27] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[28] K. Jarrod Millman,et al. Python for Scientists and Engineers , 2011, Comput. Sci. Eng..
[29] Mark A. Moraes,et al. Parallel random numbers: As easy as 1, 2, 3 , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[30] Fernando Pérez,et al. Python: An Ecosystem for Scientific Computing , 2011, Computing in Science & Engineering.
[31] Stefan Behnel,et al. Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.
[32] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[33] Zhang Yunquan,et al. Model-driven Level 3 BLAS Performance Optimization on Loongson 3A Processor , 2012, ICPADS.
[34] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[35] Qian Wang,et al. AUGEM: Automatically generate high performance Dense Linear Algebra kernels on x86 CPUs , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
[36] Felix S. Klock,et al. The rust language , 2014 .
[37] Nicholas D. Matsakis,et al. The rust language , 2014, HILT '14.
[38] Emmanuelle Gouillart,et al. scikit-image: image processing in Python , 2014, PeerJ.
[39] Melissa E. O'Neill. PCG : A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation , 2014 .
[40] Valcir João da Cunha Farias,et al. Analysis of Functional Magnetic Resonance Images , 2014 .
[41] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[42] Zheng Zhang,et al. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems , 2015, ArXiv.
[43] Simon Liedtke,et al. SunPy—Python for solar physics , 2015, 1505.02563.
[44] Siu Kwan Lam,et al. Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.
[45] Mehdi Amini,et al. Pythran: Enabling Static Optimization of Scientific Python Programs , 2013, SciPy.
[46] Yuan Yu,et al. TensorFlow: A system for large-scale machine learning , 2016, OSDI.
[47] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[48] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[49] et al.,et al. Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.
[50] K. Bouman,et al. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE , 2016, 1605.06156.
[51] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[52] Stephan Hoyer,et al. xarray: N-D labeled arrays and datasets in Python , 2017 .
[53] Joseph Hamman,et al. Pangeo: A Big-data Ecosystem for Scalable Earth System Science , 2018 .
[54] Miguel de Val-Borro,et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.
[55] Adrian M. Price-Whelan,et al. Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.
[56] John K. Parejko,et al. LSST data management software development practices and tools , 2018, Astronomical Telescopes + Instrumentation.
[57] K. Jarrod Millman,et al. Developing Open-Source Scientific Practice * , 2018, Implementing Reproducible Research.
[58] J. Dongarra,et al. Evolution of Numerical Software for Dense Linear Algebra , 2018 .
[59] K. Jarrod Millman,et al. Teaching Computational Reproducibility for Neuroimaging , 2018, Front. Neurosci..
[60] Daniel Lemire,et al. Fast Random Integer Generation in an Interval , 2018, ACM Trans. Model. Comput. Simul..
[61] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[62] L. Blackburn,et al. ehtim: Imaging, analysis, and simulation software for radio interferometry , 2019 .
[63] bashtage/randomgen: Release 1.16.2 , 2019 .
[64] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.