PREDICTION FOR COOPERATIVE CREDIT ELIGIBILITY USING DATA MINING CLASSIFICATION WITH C4.5 ALGORITHM

BMT Artha Mandiri is a cooperative that provides savings and loans services. In providing credit, BMT Artha Mandiri still uses the manual method, namely by looking at the ledger and history of each customer, to find out whether the applicant is worthy or not worthy of credit so that it is not effective and efficient. The purpose of this research is to make an application that can predict whether a prospective customer is eligible or not to be given credit. Predictions are made using the data mining classification method, namely the C4.5 algorithm based on the supporting data each customer has to classify which factors have the most influence on the level of credit payments in the cooperative. In a built application, the C4.5 algorithm produces a decision tree that is easy to interpret based on the existing variables. In the application, there are features that can be used to make decisions about customers who will apply for credit at the cooperative. The blackbox test results on the application show that the application has been able to run as expected, while the results of the algorithm test also show that the application has been able to implement the C4.5 algorithm correctly. In addition, the results of testing for accuracy show that the maximum average value of Accuracy is 79.19%.

[1]  K. Muthamil Sudar,et al.  A two level security mechanism to detect a DDoS flooding attack in software-defined networks using entropy-based and C4.5 technique , 2020, J. High Speed Networks.

[2]  Yogiek Indra Kurniawan,et al.  Merging Pearson Correlation and TAN-ELR algorithm in recommender system , 2018 .

[3]  Nazri Mohd Nawi,et al.  A comparative analysis of classification techniques on predicting flood risk , 2020 .

[4]  Ledya Novamizanti,et al.  CONVOLUTIONAL NEURAL NETWORK PADA KLASIFIKASI SIDIK JARI MENGGUNAKAN RESNET-50 , 2020, Jurnal Teknik Informatika (Jutif).

[5]  PREDIKSI PENYAKIT TUBERCULOSIS (TBC) MENGGUNAKAN ALGORITMA C4.5 , 2018, Jurnal Ilmiah SINUS.

[6]  Pardomuan Robinson Sihombing,et al.  COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018 , 2021 .

[7]  Triowali Rosandy,et al.  PERBANDINGAN METODE NAIVE BAYES CLASSIFIER DENGAN METODE DECISION TREE (C4.5) UNTUK MENGANALISA KELANCARAN PEMBIAYAAN (Study Kasus : KSPPS / BMT AL-FADHILA , 2017 .

[8]  Yogiek Indra Kurniawan,et al.  APLIKASI KLASIFIKASI PENERIMA KARTU INDONESIA SEHAT MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER , 2018 .

[9]  Suvanam Sasidhar Babu,et al.  Predicting Academic Performance of Students Using a Hybrid Data Mining Approach , 2019, Journal of Medical Systems.

[10]  Yogiek Indra Kurniawan,et al.  Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining , 2018, Jurnal Teknologi Informasi dan Ilmu Komputer.

[11]  Y. Kurniawan,et al.  Aplikasi Prediksi Usia Kelahiran Dengan Metode Naïve Bayes , 2018 .

[12]  Simple Correlation Between Weather and COVID-19 Pandemic Using Data Mining Algorithms , 2020, IOP Conference Series: Materials Science and Engineering.

[13]  Yogiek Indra Kurniawan,et al.  Preprocessing Using Correlation Based Features Selection on Naive Bayes Classification , 2020, IOP Conference Series: Materials Science and Engineering.

[14]  Sugiyanto Sugiyanto Analisis Leverage dan Risiko Dalam Kaitannya Dengan Manfaat Ekonomi Anggota (Studi Kasus pada Koperasi Keluarga Besar PT Dirgantara Indonesia Wahana Raharja) , 2019 .

[15]  Chairul Imam,et al.  CLASSIFICATION OF MEAT IMAGERY USING ARTIFICIAL NEURAL NETWORK METHOD AND TEXTURE FEATURE EXTRACTION BY GRAY LEVEL CO-OCCURRENCE MATRIX METHOD , 2021 .

[16]  Nurgiyatna,et al.  SISTEM INFORMASI INDUSTRI KECIL MENENGAH PEMERINTAHAN KABUPATEN BOYOLALI BERBASIS WEBSITE , 2020 .

[17]  Y. Kurniawan,et al.  SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PEGAWAI TERBAIK MENGGUNAKAN SIMPLE ADDITIVE WEIGHTING , 2020 .

[18]  F. Y. Irsyadi Interactive Educational Animal Identification Game for Primary Schoolchildren with Intellectual Disability , 2019, International Journal of Advanced Trends in Computer Science and Engineering.