Understanding the use of urban green spaces from user-generated geographic information

[1]  Yunyan Du,et al.  Accessibility to urban parks for elderly residents: Perspectives from mobile phone data , 2019, Landscape and Urban Planning.

[2]  Y. Wang,et al.  What makes urban greenspace unique – Relationships between citizens’ perceptions on unique urban nature, biodiversity and environmental factors , 2019, Urban Forestry & Urban Greening.

[3]  Christoph Fink,et al.  Social media data for conservation science: A methodological overview , 2019, Biological Conservation.

[4]  S. Wood,et al.  The Geographic Spread and Preferences of Tourists Revealed by User-Generated Information on Jeju Island, South Korea , 2019, Land.

[5]  Oriol Marquet,et al.  Green streetscape and walking: Exploring active mobility patterns in dense and compact cities , 2019, Journal of Transport & Health.

[6]  Michael Sinclair,et al.  Passive crowdsourcing of social media in environmental research: A systematic map , 2019, Global Environmental Change.

[7]  L. Arge,et al.  Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood , 2019, Proceedings of the National Academy of Sciences.

[8]  David Fisher,et al.  Geolocated social media as a rapid indicator of park visitation and equitable park access , 2018, Comput. Environ. Urban Syst..

[9]  Henrikki Tenkanen,et al.  Exploring the linguistic landscape of geotagged social media content in urban environments , 2018, Digit. Scholarsh. Humanit..

[10]  R. Ilieva,et al.  Social-media data for urban sustainability , 2018, Nature Sustainability.

[11]  Zoé A. Hamstead,et al.  Using social media to understand drivers of urban park visitation in the Twin Cities, MN , 2018, Landscape and Urban Planning.

[12]  Isabelle Anguelovski,et al.  Do green neighbourhoods promote urban health justice? , 2018, The Lancet. Public health.

[13]  Rein Ahas,et al.  Dynamic cities: Location-based accessibility modelling as a function of time , 2018, Applied Geography.

[14]  Hartwig H. Hochmair,et al.  Data Quality of Points of Interest in Selected Mapping and Social Media Platforms , 2018, LBS.

[15]  Tuuli Toivonen,et al.  Pyöräilyn reitit ja sujuvuus , 2017 .

[16]  Catherine Marina Pickering,et al.  Using volunteered geographic information to assess park visitation: Comparing three on-line platforms , 2017 .

[17]  V. Heikinheimo,et al.  Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas , 2017, Scientific Reports.

[18]  Bige Tunçer,et al.  Using image recognition to automate assessment of cultural ecosystem services from social media photographs , 2017, Ecosystem Services.

[19]  Olle Järv,et al.  Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation , 2017, Int. J. Geogr. Inf. Sci..

[20]  J. Burns,et al.  Green environment and incident depression in South Africa: a geospatial analysis and mental health implications in a resource-limited setting , 2017, The Lancet. Planetary health.

[21]  Yan Wang,et al.  Capturing residents' values for urban green space: mapping, analysis and guidance for practice. , 2017 .

[22]  Jakub Kronenberg,et al.  Eliciting non-monetary values of formal and informal urban green spaces using public participation GIS , 2017 .

[23]  Henrikki Tenkanen,et al.  User-Generated Geographic Information for Visitor Monitoring in a National Park: A Comparison of Social Media Data and Visitor Survey , 2017, ISPRS Int. J. Geo Inf..

[24]  Solon Barocas,et al.  Ten simple rules for responsible big data research , 2017, PLoS Comput. Biol..

[25]  Greg Brown,et al.  A Review of Sampling Effects and Response Bias in Internet Participatory Mapping (PPGIS/PGIS/VGI) , 2017, Trans. GIS.

[26]  Alex M. Lechner,et al.  An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas , 2017 .

[27]  Qunying Huang,et al.  Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? , 2016, Int. J. Geogr. Inf. Sci..

[28]  Imre Lendak,et al.  Mobile crowd-sensing in the Smart City , 2016 .

[29]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[30]  Bin Jiang,et al.  Crowdsourcing, Citizen Science or Volunteered Geographic Information? The Current State of Crowdsourced Geographic Information , 2016, ISPRS Int. J. Geo Inf..

[31]  Carolien Beckx,et al.  Dynamic assessment of exposure to air pollution using mobile phone data , 2016, International Journal of Health Geographics.

[32]  Trisalyn A. Nelson,et al.  Mapping ridership using crowdsourced cycling data , 2016 .

[33]  Marketta Kyttä,et al.  Let the Citizens Map—Public Participation GIS as a Planning Support System in the Helsinki Master Plan Process , 2016 .

[34]  Kaisa Schmidt-Thomé,et al.  Urban happiness: context-sensitive study of the social sustainability of urban settings , 2016 .

[35]  Henrikki Tenkanen,et al.  Comparing conventional and PPGIS approaches in measuring equality of access to urban aquatic environments , 2015 .

[36]  Frank Witlox,et al.  Ethnic differences in activity spaces as a characteristic of segregation: A study based on mobile phone usage in Tallinn, Estonia , 2015 .

[37]  Alexander Zipf,et al.  Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data , 2015, Comput. Environ. Urban Syst..

[38]  Matthew Zook,et al.  Social Media and the City: Rethinking Urban Socio-Spatial Inequality Using User-Generated Geographic Information , 2015 .

[39]  Jan Westerholm,et al.  Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data , 2015 .

[40]  Henrikki Tenkanen,et al.  Prospects and challenges for social media data in conservation science , 2015, Front. Environ. Sci..

[41]  Sakari Tuominen,et al.  What Data to Use for Forest Conservation Planning? A Comparison of Coarse Open and Detailed Proprietary Forest Inventory Data in Finland , 2015, PloS one.

[42]  Dieter Pfoser,et al.  Crowdsourcing urban form and function , 2015, Int. J. Geogr. Inf. Sci..

[43]  Jacqueline Kerr,et al.  A Framework for Using GPS Data in Physical Activity and Sedentary Behavior Studies , 2015, Exercise and sport sciences reviews.

[44]  D. Ruths,et al.  Social media for large studies of behavior , 2014, Science.

[45]  Anja Bechmann,et al.  Using APIs for Data Collection on Social Media , 2014, Inf. Soc..

[46]  A. Zwitter Big Data ethics , 2014, Big Data Soc..

[47]  J. Wolch,et al.  Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’ , 2014 .

[48]  R. Kitchin,et al.  Big Data, new epistemologies and paradigm shifts , 2014, Big Data Soc..

[49]  Pu Wang,et al.  Development of origin–destination matrices using mobile phone call data , 2014 .

[50]  Michael Batty,et al.  Big data, smart cities and city planning , 2013, Dialogues in human geography.

[51]  A. Guerry,et al.  Using social media to quantify nature-based tourism and recreation , 2013, Scientific Reports.

[52]  Marketta Kyttä,et al.  Towards contextually sensitive urban densification: Location-based softGIS knowledge revealing perceived residential environmental quality , 2013 .

[53]  F. Müller,et al.  Mapping ecosystem service supply, demand and budgets , 2012 .

[54]  Oliver T Mytton,et al.  Green space and physical activity: An observational study using Health Survey for England data , 2012, Health & place.

[55]  D. Boyd,et al.  CRITICAL QUESTIONS FOR BIG DATA , 2012 .

[56]  Greg Brown,et al.  An empirical evaluation of the spatial accuracy of public participation GIS (PPGIS) data , 2012 .

[57]  P. Aspinall,et al.  More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns , 2012 .

[58]  Ramón Cáceres,et al.  A Tale of One City: Using Cellular Network Data for Urban Planning , 2011, IEEE Pervasive Computing.

[59]  R. Maheswaran,et al.  The health benefits of urban green spaces: a review of the evidence. , 2011, Journal of public health.

[60]  Yi‐Chen Wang,et al.  Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies , 2011 .

[61]  Timothy Baldwin,et al.  Language Identification: The Long and the Short of the Matter , 2010, NAACL.

[62]  O. Järv,et al.  Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones , 2010 .

[63]  R. Ahas,et al.  Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data , 2010 .

[64]  Rein Ahas,et al.  Evaluating passive mobile positioning data for tourism surveys: An Estonian case study , 2008 .

[65]  J. Schipperijn,et al.  Tools for mapping social values of urban woodlands and other green areas , 2007 .

[66]  G. Daily Nature's services: societal dependence on natural ecosystems. , 1998 .

[67]  Claudia Bergroth Uncovering population dynamics using mobile phone data : the case of Helsinki Metropolitan Area , 2019 .

[68]  Executive Summary World Urbanization Prospects: The 2018 Revision , 2019 .

[69]  R. Slotow,et al.  Social Media Data Can Be Used to Understand Tourists’ Preferences for Nature‐Based Experiences in Protected Areas , 2018 .

[70]  Tarmo Virtanen,et al.  Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement , 2017 .

[71]  C. Blais,et al.  Reduction of disparities in access to green spaces: Their geographic insertion and recreational functions matter. , 2016 .

[72]  Anabel Quan-Haase,et al.  What is Social Media and What Questions Can Social Media Research Help Us Answer , 2016 .

[73]  C. V. D. Bosch,et al.  Challenges and strategies for urban green-space planning in cities undergoing densification: A review , 2015 .

[74]  Greg Brown,et al.  Key issues and research priorities for public participation GIS (PPGIS): A synthesis based on empirical research , 2014 .

[75]  Greg Brown,et al.  Using participatory GIS to measure physical activity and urban park benefits , 2014 .

[76]  Zoé A. Hamstead,et al.  Urban Ecosystem Services , 2021, Urban Ecology for Citizens and Planners.

[77]  Rein Ahas,et al.  Modelling Home and Work Locations of Populations Using Passive Mobile Positioning Data , 2009 .

[78]  M. Jenks,et al.  Dimensions of the sustainable city , 2008 .