A Hardy–Ramanujan Formula for Lie Algebras
暂无分享,去创建一个
[1] E. Cartan. Les groupes réels simples, finis et continus , 1914 .
[2] Exploring noiseless subsystems via nuclear magnetic resonance , 2002, quant-ph/0210057.
[3] Berkeley,et al. Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.
[4] G. Meinardus,et al. Asymptotische aussagen über Partitionen , 1953 .
[5] Institute for Scientific Interchange Foundation,et al. Stabilizing Quantum Information , 1999 .
[6] Viola,et al. Theory of quantum error correction for general noise , 2000, Physical review letters.
[7] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[8] Daniel A. Lidar,et al. Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.
[9] William Gordon Ritter,et al. Quantum channels and representation theory , 2005, quant-ph/0502153.
[10] P. Shiu. An introduction to the theory of numbers (5th edition) , by I. Niven, H. S. Zuckerman and H. L. Montgomery. Pp 529. £14·50. 1991. ISBN 0-471-5460031 (Wiley) , 1991 .
[11] Paolo Zanardi,et al. A Possible Strategy to Defeat Decoherence in Quantum Computation: The Role of Symmetries, Dynamical Algebras, and All That , 2000 .
[12] R Laflamme,et al. Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.
[13] Emil Grosswald,et al. The Theory of Partitions , 1984 .