FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time.

[1]  Paul Brumer,et al.  Control of unimolecular reactions using coherent light , 1986 .

[2]  Nikolay V. Vitanov,et al.  Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage , 1999 .

[3]  Harris,et al.  Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence. , 1996, Physical review letters.

[4]  Harris,et al.  Lasers without inversion: Interference of lifetime-broadened resonances. , 1989, Physical review letters.

[5]  T. Baumert,et al.  Femtosecond pulse shaping by an evolutionary algorithm with feedback , 1997 .

[6]  Stuart A. Rice,et al.  Coherent pulse sequence induced control of selectivity of reactions , 1986, International Laser Science Conference.

[7]  Ramasamy Manoharan,et al.  Effect of Cultural Conditions on Deep UV Resonance Raman Spectra of Bacteria , 1993 .

[8]  Pedro Carmona,et al.  Vibrational spectra and structure of crystalline dipicolinic acid and calcium dipicolinate trihydrate , 1980 .

[9]  Marlan O. Scully,et al.  From lasers and masers to phaseonium and phasers , 1992 .

[10]  M. Scully,et al.  Stopping light via hot atoms. , 2001, Physical review letters.

[11]  Andrew M. Weiner,et al.  High-resolution femtosecond pulse shaping , 1988 .

[12]  Koji Mizuno,et al.  Development of millimeter-wave two-dimensional imaging array , 1999 .

[13]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[14]  G. Wiederrecht,et al.  Femtosecond Pulse Sequences Used for Optical Manipulation of Molecular Motion , 1990, Science.

[15]  P. Lillford,et al.  Investigation of bacterial spore structure by high resolution solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. , 2001, International journal of food microbiology.

[16]  G. Gerber,et al.  Femtosecond Quantum Control , 2001 .

[17]  J P Heritage,et al.  Picosecond pulse shaping by spectral phase and amplitude manipulation. , 1985, Optics letters.

[18]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[19]  K. Nelson,et al.  Generation of high-fidelity programmable ultrafast optical waveforms. , 1995, Optics letters.

[20]  D. Zeidler,et al.  Optimal control of ground-state dynamics in polymers , 2002 .

[21]  Ramasamy Manoharan,et al.  UV Resonance Raman Spectra of Bacillus Spores , 1992 .

[22]  Harris,et al.  Observation of electromagnetically induced transparency in collisionally broadened lead vapor. , 1991, Physical review letters.

[23]  Mark Seaver,et al.  Size and Fluorescence Measurements for Field Detection of Biological Aerosols , 1999 .

[24]  D. Strickland,et al.  Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses. , 1994, Optics letters.

[25]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[26]  Liang,et al.  Sideband generation using strongly driven raman coherence in solid hydrogen , 2000, Physical review letters.

[27]  E. Mcsweegan,et al.  Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response , 2000 .

[28]  S. Silvestri,et al.  Compression of high-energy laser pulses below 5 fs. , 1997, Optics letters.

[29]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[30]  W. Nelson,et al.  UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate , 1990 .

[31]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[32]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[33]  A. H. Compton A Quantum Theory of the Scattering of X-rays by Light Elements , 1923 .

[34]  W. Kiefer,et al.  Femtosecond laser-controlled selective excitation of vibrational modes on a multidimensional ground state potential energy surface , 2000 .

[35]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[36]  Lukin,et al.  Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb. , 1995, Physical review letters.

[37]  Peter Knight,et al.  Laser spectroscopy , 1978, Nature.

[38]  Gerber,et al.  Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses , 1998, Science.

[39]  P. Mandel,et al.  Coherent Phenomena and Amplification without Inversion , 1996 .

[40]  K. Talaro,et al.  Foundations in Microbiology , 1992 .

[41]  Scully,et al.  Enhancement of the index of refraction via quantum coherence. , 1991, Physical review letters.

[42]  J. G. Black Microbiology: Principles and Explorations , 1980 .

[43]  Edward S. Fry,et al.  ULTRASLOW GROUP VELOCITY AND ENHANCED NONLINEAR OPTICAL EFFECTS IN A COHERENTLY DRIVEN HOT ATOMIC GAS , 1999, quant-ph/9904031.

[44]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[45]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[46]  Yung-sung Cheng,et al.  Detection of bioaerosols using multiwavelength UV fluorescence spectroscopy , 1999 .

[47]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[48]  S. Schlücker,et al.  Two-dimensional probing of ground-state vibrational dynamics in porphyrin molecules by fs-CARS , 2001 .

[49]  Zare,et al.  Laser control of chemical reactions , 1998, Science.

[50]  Gavrielides,et al.  Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing. , 1989, Physical review letters.

[51]  Harris,et al.  Observation of electromagnetically induced transparency. , 1991, Physical review letters.

[52]  Andrew M. Weiner,et al.  Femtosecond optical pulse shaping and processing , 1995 .

[53]  A. Sokolov,et al.  Broadband spectral generation with refractive index control , 1997 .

[54]  S. Rice,et al.  Active control of the dynamics of atoms and molecules. , 1997, Annual review of physical chemistry.

[55]  D. Wiersma,et al.  Optical pulse compression to 5 fs at a 1-MHz repetition rate. , 1997, Optics letters.