A Boltzmann based model for open channel flows
暂无分享,去创建一个
William G. Gray | Mohamed Salah Ghidaoui | Kun Xu | Jiaquan Deng | W. Gray | Kun Xu | M. Ghidaoui | Jiaquan Deng | K. Xu
[1] G. Doolen,et al. Discrete Boltzmann equation model for nonideal gases , 1998 .
[2] Michael B. Abbott,et al. Computational Hydraulics , 1998 .
[3] J. Quirk. A Contribution to the Great Riemann Solver Debate , 1994 .
[4] Mohamed Salah Ghidaoui,et al. Low-Speed Flow Simulation by the Gas-Kinetic Scheme , 1999 .
[5] Rolf D. Reitz,et al. One-dimensional compressible gas dynamics calculations using the Boltzmann equation , 1981 .
[6] Yue-Hong Qian,et al. Simulating thermohydrodynamics with lattice BGK models , 1993 .
[7] Antony Jameson,et al. BGK-Based Schemes for the Simulation of Compressible Flow , 1996 .
[8] G. Lebon,et al. Extended irreversible thermodynamics , 1993 .
[9] Johannes Vassiliou Oulis. COMPUTATION OF TWO-DIMENSIONAL DAM-BREAK FLOOD FLOWS , 1992 .
[10] C. Hirsch. Numerical computation of internal and external flows , 1988 .
[11] L. P. Kok,et al. Table errata: Handbook of mathematical functions, with formulas, graphs, and mathematical tables [Dover, New York, 1966; MR 34 #8606] , 1983 .
[12] C. Hirsch. Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .
[13] Kun Xu,et al. Numerical hydrodynamics from gas-kinetic theory , 1993 .
[14] Pilar García-Navarro,et al. Flux difference splitting for 1D open channel flow equations , 1992 .
[15] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[16] P. Roe,et al. On Godunov-type methods near low densities , 1991 .
[17] D. Zhao,et al. Finite‐Volume Two‐Dimensional Unsteady‐Flow Model for River Basins , 1994 .
[18] Reinaldo García,et al. Numerical solution of the St. Venant equations with the MacCormack finite‐difference scheme , 1986 .
[19] C. Chu. Kinetic‐Theoretic Description of the Formation of a Shock Wave , 1965 .
[20] Shiyi Chen,et al. LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .
[21] K. MacAdam,et al. ANOMALOUS FINAL-STATE DISTRIBUTIONS OF ELECTRONS CAPTURED FROM DIRECTED RYDBERG STATES , 1998 .
[22] Kun Xu,et al. Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .
[23] D. Zhao,et al. Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling , 1996 .
[24] A numerical scheme for Free-surface Flow Modelling Based on Kinetic Theory , 1970 .
[25] Kun Xu. A Gas-Kinetic Scheme for the Euler Equations with Heat Transfer , 1999, SIAM J. Sci. Comput..
[26] C. He. Ortho-para separation of molecules using optical orientation of atoms in hyperfine Zeeman states , 1998 .
[27] D. Pullin,et al. Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .
[28] Xiaowen Shan,et al. Multicomponent lattice-Boltzmann model with interparticle interaction , 1995, comp-gas/9503001.
[29] J. V. Soulis,et al. Computation of two-dimensional dam-break-induced flows , 1991 .
[30] Juichiro Akiyama,et al. First- and Second-Order Flux Difference Splitting Schemes for Dam-Break Problem , 1995 .
[31] G. Sod. Numerical methods in fluid dynamics , 1985 .
[32] Pilar García-Navarro,et al. A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .
[33] Antony Jameson,et al. Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .
[34] M. Hanif Chaudhry,et al. Explicit Methods for 2‐D Transient Free Surface Flows , 1990 .
[35] Thomas W. Roberts,et al. The behavior of flux difference splitting schemes near slowly moving shock waves , 1990 .
[36] Matthaeus,et al. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[37] D. Martínez,et al. Lattice Boltzmann magnetohydrodynamics , 1994, comp-gas/9401002.
[38] Kun Xu,et al. BGK-Based Scheme for Multicomponent Flow Calculations , 1997 .
[39] S. H. Chang,et al. Computations of free surface flows Part 1: One-dimensional dam-break flow , 1993 .
[40] T. Teichmann,et al. Introduction to physical gas dynamics , 1965 .
[41] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[42] Daniel H. Rothman,et al. Cellular‐automaton fluids: A model for flow in porous media , 1988 .
[43] Charles Hirsch,et al. Numerical computation of internal and external flows (vol1: Fundamentals of numerical discretization) , 1991 .
[44] R. H. Sanders,et al. The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .
[45] R. LeVeque. Numerical methods for conservation laws , 1990 .
[46] S. Zaleski,et al. Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.