A Boltzmann based model for open channel flows

A finite volume, Boltzmann Bhatnagar-Gross-Krook (BGK) numerical model for one- and two-dimensional unsteady open channel flows is formulated and applied. The BGK scheme satisfies the entropy condition and thus prevents unphysical shocks. In addition, the van Leer limiter and the collision term ensure that the BGK scheme admits oscillation-free solutions only. The accuracy and efficiency of the BGK scheme are demonstrated through the following examples: (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) one-and two-dimensional dam break problems. These test cases are performed for a variety of Courant numbers (C r ), with the only condition being C r < 1. All the computational results are free of spurious oscillations and unphysical shocks (i.e., expansion shocks)

[1]  G. Doolen,et al.  Discrete Boltzmann equation model for nonideal gases , 1998 .

[2]  Michael B. Abbott,et al.  Computational Hydraulics , 1998 .

[3]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[4]  Mohamed Salah Ghidaoui,et al.  Low-Speed Flow Simulation by the Gas-Kinetic Scheme , 1999 .

[5]  Rolf D. Reitz,et al.  One-dimensional compressible gas dynamics calculations using the Boltzmann equation , 1981 .

[6]  Yue-Hong Qian,et al.  Simulating thermohydrodynamics with lattice BGK models , 1993 .

[7]  Antony Jameson,et al.  BGK-Based Schemes for the Simulation of Compressible Flow , 1996 .

[8]  G. Lebon,et al.  Extended irreversible thermodynamics , 1993 .

[9]  Johannes Vassiliou Oulis COMPUTATION OF TWO-DIMENSIONAL DAM-BREAK FLOOD FLOWS , 1992 .

[10]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[11]  L. P. Kok,et al.  Table errata: Handbook of mathematical functions, with formulas, graphs, and mathematical tables [Dover, New York, 1966; MR 34 #8606] , 1983 .

[12]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[13]  Kun Xu,et al.  Numerical hydrodynamics from gas-kinetic theory , 1993 .

[14]  Pilar García-Navarro,et al.  Flux difference splitting for 1D open channel flow equations , 1992 .

[15]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[16]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[17]  D. Zhao,et al.  Finite‐Volume Two‐Dimensional Unsteady‐Flow Model for River Basins , 1994 .

[18]  Reinaldo García,et al.  Numerical solution of the St. Venant equations with the MacCormack finite‐difference scheme , 1986 .

[19]  C. Chu Kinetic‐Theoretic Description of the Formation of a Shock Wave , 1965 .

[20]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[21]  K. MacAdam,et al.  ANOMALOUS FINAL-STATE DISTRIBUTIONS OF ELECTRONS CAPTURED FROM DIRECTED RYDBERG STATES , 1998 .

[22]  Kun Xu,et al.  Numerical Navier-Stokes solutions from gas kinetic theory , 1994 .

[23]  D. Zhao,et al.  Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling , 1996 .

[24]  A numerical scheme for Free-surface Flow Modelling Based on Kinetic Theory , 1970 .

[25]  Kun Xu A Gas-Kinetic Scheme for the Euler Equations with Heat Transfer , 1999, SIAM J. Sci. Comput..

[26]  C. He Ortho-para separation of molecules using optical orientation of atoms in hyperfine Zeeman states , 1998 .

[27]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[28]  Xiaowen Shan,et al.  Multicomponent lattice-Boltzmann model with interparticle interaction , 1995, comp-gas/9503001.

[29]  J. V. Soulis,et al.  Computation of two-dimensional dam-break-induced flows , 1991 .

[30]  Juichiro Akiyama,et al.  First- and Second-Order Flux Difference Splitting Schemes for Dam-Break Problem , 1995 .

[31]  G. Sod Numerical methods in fluid dynamics , 1985 .

[32]  Pilar García-Navarro,et al.  A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .

[33]  Antony Jameson,et al.  Gas-kinetic finite volume methods, flux-vector splitting, and artificial diffusion , 1995 .

[34]  M. Hanif Chaudhry,et al.  Explicit Methods for 2‐D Transient Free Surface Flows , 1990 .

[35]  Thomas W. Roberts,et al.  The behavior of flux difference splitting schemes near slowly moving shock waves , 1990 .

[36]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[37]  D. Martínez,et al.  Lattice Boltzmann magnetohydrodynamics , 1994, comp-gas/9401002.

[38]  Kun Xu,et al.  BGK-Based Scheme for Multicomponent Flow Calculations , 1997 .

[39]  S. H. Chang,et al.  Computations of free surface flows Part 1: One-dimensional dam-break flow , 1993 .

[40]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[41]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[42]  Daniel H. Rothman,et al.  Cellular‐automaton fluids: A model for flow in porous media , 1988 .

[43]  Charles Hirsch,et al.  Numerical computation of internal and external flows (vol1: Fundamentals of numerical discretization) , 1991 .

[44]  R. H. Sanders,et al.  The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .

[45]  R. LeVeque Numerical methods for conservation laws , 1990 .

[46]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.