1-Bend RAC Drawings of 1-Planar Graphs

A graph is 1-planar if it has a drawing where each edge is crossed at most once. A drawing is RAC (Right Angle Crossing) if the edges cross only at right angles. The relationships between 1-planar graphs and RAC drawings have been partially studied in the literature. It is known that there are both 1-planar graphs that are not straight-line RAC drawable and graphs that have a straight-line RAC drawing but that are not 1-planar [22]. Also, straight-line RAC drawings always exist for IC-planar graphs [9], a subclass of 1-planar graphs. One of the main questions still open is whether every 1-planar graph has a RAC drawing with at most one bend per edge. We positively answer this question.

[1]  Helen C. Purchase,et al.  Which Aesthetic has the Greatest Effect on Human Understanding? , 1997, GD.

[2]  Weidong Huang,et al.  Larger crossing angles make graphs easier to read , 2014, J. Vis. Lang. Comput..

[3]  Franz-Josef Brandenburg 1-Visibility Representations of 1-Planar Graphs , 2014, J. Graph Algorithms Appl..

[4]  Giuseppe Liotta,et al.  Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs , 2015, Discrete & Computational Geometry.

[5]  Ioannis G. Tollis,et al.  Graph Drawing , 1994, Lecture Notes in Computer Science.

[6]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[7]  Roberto Tamassia,et al.  On-Line Planarity Testing , 1989, SIAM J. Comput..

[8]  Peter Eades,et al.  Effects of Crossing Angles , 2008, 2008 IEEE Pacific Visualization Symposium.

[9]  Helen C. Purchase,et al.  Effective information visualisation: a study of graph drawing aesthetics and algorithms , 2000, Interact. Comput..

[10]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[11]  Stephen G. Kobourov,et al.  Straight-Line Grid Drawings of 3-Connected 1-Planar Graphs , 2013, Graph Drawing.

[12]  Weidong Huang,et al.  Improving Force-Directed Graph Drawings by Making Compromises Between Aesthetics , 2010, 2010 IEEE Symposium on Visual Languages and Human-Centric Computing.

[13]  Carsten Thomassen,et al.  Rectilinear drawings of graphs , 1988, J. Graph Theory.

[14]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[15]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2011, Discret. Appl. Math..

[16]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[17]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.

[18]  Walter Didimo,et al.  Topology-Driven Force-Directed Algorithms , 2010, GD.

[19]  Eyal Ackerman A note on 1-planar graphs , 2014, Discret. Appl. Math..

[20]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.

[21]  Emilio Di Giacomo,et al.  2-Layer Right Angle Crossing Drawings , 2011, Algorithmica.

[22]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[23]  Weidong Huang,et al.  Using eye tracking to investigate graph layout effects , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[24]  David A. Carrington,et al.  Empirical Evaluation of Aesthetics-based Graph Layout , 2002, Empirical Software Engineering.

[25]  Michael Kaufmann,et al.  Journal of Graph Algorithms and Applications on the Perspectives Opened by Right Angle Crossing Drawings , 2022 .

[26]  Emilio Di Giacomo,et al.  Area requirement of graph drawings with few crossings per edge , 2013, Comput. Geom..

[27]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[28]  Michael A. Bekos,et al.  Maximizing the Total Resolution of Graphs , 2013, Comput. J..

[29]  Weidong Huang,et al.  Large Crossing Angles in Circular Layouts , 2010, GD.

[30]  Walter Didimo,et al.  The Crossing-Angle Resolution in Graph Drawing , 2013 .

[31]  Michael A. Bekos Simultaneous Drawing of Planar Graphs with Right-Angle Crossings and Few Bends , 2014 .

[32]  Emilio Di Giacomo,et al.  Heuristics for the Maximum 2-Layer RAC Subgraph Problem , 2012, Comput. J..

[33]  Walter Didimo Density of straight-line 1-planar graph drawings , 2013, Inf. Process. Lett..

[34]  Walter Didimo,et al.  Recognizing and drawing IC-planar graphs , 2015, Theor. Comput. Sci..

[35]  Csaba D. Tóth,et al.  Graphs that admit right angle crossing drawings , 2010, Comput. Geom..

[36]  Walter Didimo,et al.  A Graph Drawing Application to Web Site Traffic Analysis , 2011, J. Graph Algorithms Appl..