The global spread of HIV-1 subtype B epidemic
暂无分享,去创建一个
M. Poljak | A. Wensing | R. Paredes | L. Kostrikis | S. Yerly | A. Vandamme | C. Boucher | A. Katzourakis | G. Magiorkinis | R. Camacho | V. Soriano | J. Albert | A. Sönnerborg | D. Struck | S. Coughlan | G. Lawyer | Nikolopoulos | K. Angelis | O. Hamouda | D. Otelea | D. Paraskevis | J. Schmit | C. Balotta | C. Nielsen | K. Liitsola | D. Staneková | M. Stanojevic | A. Luca | M. Chaix | G. Angarano | A. Griškevičius | I. Alexiev | T. Vasylyeva | P. Gómes | I. Mamais | B. Åsjö | Grossman | M. Linka | M. Zazzi | A. Horban | Snjezana J. Lepej | Vercauteren | Hatzakis | David van de Vijver | S. R. Friedman | 4. Jurgen | 6. Zehava | Puchhammer-Stöckl | 10 Georgios | Klaus Korn
[1] R. Sanjuán,et al. Extremely High Mutation Rate of HIV-1 In Vivo , 2015, PLoS biology.
[2] M. Poljak,et al. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia. , 2015, The Journal of infectious diseases.
[3] B. Hall,et al. Building phylogenetic trees from molecular data with MEGA. , 2013, Molecular biology and evolution.
[4] M. Poljak,et al. Limited cross-border infections in patients newly diagnosed with HIV in Europe , 2013, Retrovirology.
[5] W. Switzer,et al. Detailed Molecular Epidemiologic Characterization of HIV-1 Infection in Bulgaria Reveals Broad Diversity and Evolving Phylodynamics , 2013, PloS one.
[6] S. Ho,et al. Dating the origin and dispersal of hepatitis B virus infection in humans and primates , 2013, Hepatology.
[7] Klaus Korn,et al. HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in Europe suggest highly compartmentalized epidemics , 2013, Retrovirology.
[8] T. Leitner,et al. Phylogenetic analysis of the Latvian HIV-1 epidemic. , 2012, AIDS research and human retroviruses.
[9] O. Pybus,et al. Explosive HIV-1 subtype B' epidemics in Asia driven by geographic and risk group founder events. , 2010, Virology.
[10] Matthias Cavassini,et al. Molecular epidemiology reveals long-term changes in HIV type 1 subtype B transmission in Switzerland. , 2010, The Journal of infectious diseases.
[11] Steven Wolinsky,et al. How fast could HIV change gene frequencies in the human population? , 2010, Proceedings of the Royal Society B: Biological Sciences.
[12] O. Pybus,et al. The Global Spread of Hepatitis C Virus 1a and 1b: A Phylodynamic and Phylogeographic Analysis , 2009, PLoS medicine.
[13] M. Poljak,et al. Transmission of drug-resistant HIV-1 is stabilizing in Europe. , 2009, The Journal of infectious diseases.
[14] O. Pybus,et al. Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach , 2009, Retrovirology.
[15] J. Rougemont,et al. A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.
[16] N. Grassly,et al. Mathematical models of infectious disease transmission , 2008, Nature Reviews Microbiology.
[17] Gaël Thébaud,et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus , 2008, Proceedings of the Royal Society B: Biological Sciences.
[18] Spread programme,et al. Transmission of drug-resistant HIV-1 in Europe remains limited to single classes , 2008, AIDS.
[19] A. Rambaut,et al. Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics , 2008, PLoS medicine.
[20] A. Rambaut,et al. BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.
[21] M. Keeling,et al. Modeling Infectious Diseases in Humans and Animals , 2007 .
[22] R. Lathrop,et al. A statistical phylogeography of influenza A H5N1 , 2007, Proceedings of the National Academy of Sciences.
[23] Alexandros Stamatakis,et al. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..
[24] S. Ho,et al. Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.
[25] F. Ceccherini‐Silberstein,et al. Molecular diversity of HIV in Albania. , 2005, The Journal of infectious diseases.
[26] Stéphane Hué,et al. Genetic analysis reveals the complex structure of HIV-1 transmission within defined risk groups. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[27] Randall S. Hansen. Migration to Europe since 1945: Its History and its Lessons , 2003 .
[28] M J Sanderson,et al. Improved bootstrap confidence limits in large-scale phylogenies, with an example from Neo-Astragalus (Leguminosae). , 2000, Systematic biology.
[29] D. Vlahov,et al. Evidence for HIV type 1 strains of U.S. intravenous drug users as founders of AIDS epidemic among intravenous drug users in northern Europe. , 1996, AIDS research and human retroviruses.
[30] L. M. Mansky,et al. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase , 1995, Journal of virology.
[31] P. Kaye. Infectious diseases of humans: Dynamics and control , 1993 .
[32] M Slatkin,et al. A cladistic measure of gene flow inferred from the phylogenies of alleles. , 1989, Genetics.
[33] I. Gust,et al. Acquired immune deficiency syndrome , 1983, The Medical journal of Australia.
[34] J. Chermann,et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). , 1983, Science.
[35] P. Whittle. THE OUTCOME OF A STOCHASTIC EPIDEMIC—A NOTE ON BAILEY'S PAPER , 1955 .
[36] N. Bailey. The Total Size of a General Stochastic Epidemic , 1953 .
[37] M. Poljak,et al. HIV‑1 molecular epidemiology in the Balkans: a melting pot for high genetic diversity. , 2012, AIDS reviews.
[38] Zeng Da-you,et al. Mathematical Models of Infectious Disease , 2005 .
[39] J. Albert,et al. Epidemiology of HIV in Estonia. , 2001, AIDS research and human retroviruses.