Investigating Sources of Mercury's Crustal Magnetic Field: Further Mapping of MESSENGER Magnetometer Data

One hundred six low‐altitude passes of magnetometer data from the last 2 months of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging mission have been applied to produce a map of the crustal magnetic field at a constant altitude of 40 km covering latitudes of 35–75∘ N and longitudes of 270–90∘ E. Some anomalies correlate significantly with impact basins/craters (e.g., Rustaveli and Vyasa), while other basins/craters have no obvious anomalies. A possible interpretation that is consistent with lunar evidence is that some impactors delivered more ferromagnetic Fe–Ni metal to the interior subsurfaces and ejecta fields of the craters/basins that they produced. The amount of metallic iron that could plausibly be delivered is limited by the diameter and mass of an impactor that would yield a crater with observed diameters (e.g., 200 km for Rustaveli). This in turn limits the maximum amplitude of anomalies that could be induced by impactor‐added iron in the present‐day Mercury global field to relatively low values. It is therefore concluded that if impactor‐added iron is the source of the observed crater‐associated anomalies, then they must be almost entirely a consequence of ancient remanent magnetization. A broad magnetic anomaly occurs over the northern rise, a topographically high region with an associated strong free air gravity anomaly. A possible interpretation of the latter anomaly is that an early major impact preconditioned the region for a later mantle uplift event.

[1]  D. Rothery,et al.  Geology of the Hokusai quadrangle (H05), Mercury , 2019, Journal of Maps.

[2]  Kevin R. Housen,et al.  Impact Cratering: A Geologic Process , 1987 .

[3]  S. Tikoo,et al.  of Geophysical Research : Planets Lunar Swirl Morphology Constrains the Geometry , Magnetization , and Origins of Lunar Magnetic Anomalies , 2018 .

[4]  D. Rothery,et al.  Spatial distribution and morphometric measurements of circum-Caloris knobs on Mercury: Application of novel shadow measurements , 2018 .

[5]  M. Wieczorek,et al.  Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data , 2017 .

[6]  Valentina Galluzzi,et al.  Geology of the Shakespeare quadrangle (H03), Mercury , 2017 .

[7]  D. Rothery,et al.  Geological mapping of the Hokusai (H05) quadrangle of Mercury , 2017 .

[8]  Paolo Mancinelli,et al.  Mercury's Caloris basin: Continuity between the interior and exterior plains , 2017 .

[9]  P. Spudis,et al.  Magnetic anomalies in the Imbrium and Schrödinger impact basins: Orbital evidence for persistence of the lunar core dynamo into the Imbrian epoch , 2016 .

[10]  P. Palumbo,et al.  Geology of the Victoria quadrangle (H02), Mercury , 2016 .

[11]  Paolo Mancinelli,et al.  Geology of the Raditladi quadrangle, Mercury (H04) , 2016 .

[12]  L. Hood Magnetic anomalies concentrated near and within Mercury's impact basins: Early mapping and interpretation , 2016 .

[13]  L. Nittler,et al.  Evidence from MESSENGER for sulfur‐ and carbon‐driven explosive volcanism on Mercury , 2016 .

[14]  Carolyn M. Ernst,et al.  Mapping Mercury: Global Imaging Strategy and Products from the MESSENGER Mission , 2016 .

[15]  D. Rothery,et al.  Preliminary observations of Rustaveli basin, Mercury , 2016 .

[16]  L. Hood Initial mapping of Mercury's crustal magnetic field: Relationship to the Caloris impact basin , 2015 .

[17]  S. Murchie,et al.  Global Distribution and Spectral Properties of Low‐Reflectance Material on Mercury , 2015 .

[18]  L. Nittler,et al.  Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material , 2015 .

[19]  H. Tsunakawa,et al.  Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations , 2015 .

[20]  B. Langlais,et al.  A modified Equivalent Source Dipole method to model partially distributed magnetic field measurements, with application to Mercury , 2015 .

[21]  J. Head,et al.  Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field , 2015, Science.

[22]  L. Nittler,et al.  Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer , 2015 .

[23]  J. Head,et al.  Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations , 2015 .

[24]  L. Hood,et al.  Nectarian Paleomagnetic Pole Inferred from Kaguya Satellite Magnetic Observations of the Central Leibnitz Basin , 2015 .

[25]  M. Zuber,et al.  Support of long‐wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography , 2015 .

[26]  Benjamin P. Weiss,et al.  The lunar dynamo , 2014, Science.

[27]  D. Rothery,et al.  Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology , 2014 .

[28]  L. Nittler,et al.  Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations , 2014 .

[29]  H. Tsunakawa,et al.  Regional mapping of the lunar magnetic anomalies at the surface: Method and its application to strong and weak magnetic anomaly regions , 2014 .

[30]  P. Spudis,et al.  Origin of strong lunar magnetic anomalies: Further mapping and examinations of LROC imagery in regions antipodal to young large impact basins , 2013 .

[31]  S. Murchie,et al.  The distribution and origin of smooth plains on Mercury , 2013 .

[32]  David E. Smith,et al.  Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data , 2012 .

[33]  Richard D. Starr,et al.  Major-Element Abundances on the Surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer , 2012 .

[34]  M. Zuber,et al.  Low‐degree structure in Mercury's planetary magnetic field , 2012 .

[35]  J. Head,et al.  Deformation Associated with Ghost Craters and Basins in Volcanic Smooth Plains on Mercury: Strain Analysis and Implications for Plains Evolution , 2012 .

[36]  J. Head,et al.  Magnetic signature of the lunar South Pole-Aitken basin: Character, origin, and age , 2012 .

[37]  David E. Smith,et al.  Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry , 2012, Science.

[38]  David E. Smith,et al.  Gravity Field and Internal Structure of Mercury from MESSENGER , 2012, Science.

[39]  S. Stewart,et al.  An Impactor Origin for Lunar Magnetic Anomalies , 2012, Science.

[40]  L. Nittler,et al.  Flood Volcanism in the Northern High Latitudes of Mercury Revealed by MESSENGER , 2011, Science.

[41]  M. Wieczorek,et al.  Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .

[42]  L. Hood Central magnetic anomalies of Nectarian-aged lunar impact basins: Probable evidence for an early core dynamo , 2011 .

[43]  P. Rochette,et al.  Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples , 2009 .

[44]  S. Murchie,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[45]  S. E. Hawkins,et al.  Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity , 2008, Science.

[46]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[47]  J. Clerc,et al.  Magnetic classification of stony meteorites: 2. Non‐ordinary chondrites , 2008 .

[48]  D. Mitchell,et al.  Global mapping of lunar crustal magnetic fields by Lunar Prospector , 2008 .

[49]  L. Hood,et al.  A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data , 2008 .

[50]  N. Artemieva,et al.  Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations , 2008 .

[51]  N. Olsen,et al.  The Lunar Magnetic Field Environment: Interpretation of New Maps of the Internal and External Fields , 2006 .

[52]  D. Mitchell,et al.  Correlation of a strong lunar magnetic anomaly with a high‐albedo region of the Descartes mountains , 2003 .

[53]  D. Mitchell,et al.  Magnetic fields of lunar multi‐ring impact basins , 2003 .

[54]  Mario H. Acuna,et al.  Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data , 2001 .

[55]  Mario H. Acuna,et al.  Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer , 2001 .

[56]  R. Korotev The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact‐melt breccias , 2000 .

[57]  A. Vasavada,et al.  Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits☆ , 1999 .

[58]  R. Korotev,et al.  The case for an Imbrium origin of the Apollo thorium‐rich impact‐melt breccias , 1998 .

[59]  R. Korotev Compositional variation in Apollo 16 impact-melt breccias and inferences for the geology and bombardment history of the Central Highlands of the Moon , 1994 .

[60]  Robert L. Parker,et al.  A theory of ideal bodies for seamount magnetism , 1991 .

[61]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[62]  M. Rowe,et al.  SATURATION MAGNETIZATION MEASUREMENTS OF CARBONACEOUS CHONDRITES , 1986 .

[63]  R. Greeley,et al.  Geologic map of the Shakespeare Quadrangle of Mercury , 1983 .

[64]  William J. Hinze,et al.  Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion , 1981 .

[65]  C. Russell,et al.  Lunar magnetic anomalies detected by the Apollo substatellite magnetometers , 1979 .

[66]  M. A. Mayhew,et al.  Inversion of satellite magnetic anomaly data , 1979 .

[67]  Subir K. Banerjee,et al.  Early lunar magnetism , 1976, Nature.

[68]  W. Daily,et al.  Structure of the lunar interior from magnetic field measurements , 1976 .

[69]  S. Runcorn On the interpretation of lunar magnetism , 1975 .

[70]  A. P. Annan,et al.  Lunar Magnetic Anomalies , 1975 .

[71]  D. Stuart-Alexander Lunar magnetic anomalies and the Cayley Formation , 1975, Nature.