暂无分享,去创建一个
[1] Arnaud Doucet,et al. Hamiltonian Variational Auto-Encoder , 2018, NeurIPS.
[2] G. Gallavotti. The Fermi-Pasta-Ulam problem : a status report , 2008 .
[3] Pierre Vandergheynst,et al. Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..
[4] S. Barnett,et al. Philosophical Transactions of the Royal Society A : Mathematical , 2017 .
[5] David Pfau,et al. Towards a Definition of Disentangled Representations , 2018, ArXiv.
[6] H. Rabitz,et al. The canonical coset decomposition of unitary matrices through Householder transformations , 2010, 1008.2477.
[7] Denis Bernard,et al. Introduction to classical integrable systems , 2003 .
[8] Thomas G. Dietterich. Adaptive computation and machine learning , 1998 .
[9] E. Jaynes. Information Theory and Statistical Mechanics , 1957 .
[10] J. V. José,et al. Classical Dynamics: A Contemporary Approach , 1998 .
[11] Arnold W. M. Smeulders,et al. i-RevNet: Deep Invertible Networks , 2018, ICLR.
[12] Max Welling,et al. Improving Variational Auto-Encoders using Householder Flow , 2016, ArXiv.
[13] Yoshua Bengio,et al. NICE: Non-linear Independent Components Estimation , 2014, ICLR.
[14] Prafulla Dhariwal,et al. Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.
[15] Samy Bengio,et al. Density estimation using Real NVP , 2016, ICLR.
[16] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[17] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[18] M. D. Gosson,et al. Symplectic Geometry and Quantum Mechanics , 2006 .
[19] Jascha Sohl-Dickstein,et al. Generalizing Hamiltonian Monte Carlo with Neural Networks , 2017, ICLR.
[20] Raquel Urtasun,et al. The Reversible Residual Network: Backpropagation Without Storing Activations , 2017, NIPS.
[21] Jason Yosinski,et al. Hamiltonian Neural Networks , 2019, NeurIPS.
[22] J. Moser,et al. Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .
[23] Max Welling,et al. Spherical CNNs , 2018, ICLR.
[24] Max Welling,et al. Markov Chain Monte Carlo and Variational Inference: Bridging the Gap , 2014, ICML.
[25] Stéphane Mallat,et al. Understanding deep convolutional networks , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] Patrick van der Smagt,et al. Variational Inference with Hamiltonian Monte Carlo , 2016, 1609.08203.
[27] Joshua V. Dillon,et al. NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport , 2019, 1903.03704.
[28] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[29] A. Perelomov. Integrable systems of classical mechanics and Lie algebras , 1989 .