Letterplace ideals and non-commutative Gröbner bases

In this paper we propose a 1-to-1 correspondence between graded two-sided ideals of the free associative algebra and some class of ideals of the algebra of polynomials, whose variables are double-indexed commuting ones. We call these ideals the ''letterplace analogues'' of graded two-sided ideals. We study the behaviour of the generating sets of the ideals under this correspondence, and in particular that of the Grobner bases. In this way, we obtain a new method for computing non-commutative homogeneous Grobner bases via polynomials in commuting variables. Since the letterplace ideals are stable under the action of a monoid of endomorphisms of the polynomial algebra, the proposed algorithm results in an example of a Buchberger procedure ''reduced by symmetry''. Owing to the portability of our algorithm to any computer algebra system able to compute commutative Grobner bases, we present an experimental implementation of our method in Singular. By means of a representative set of examples, we show finally that our implementation is competitive with computer algebra systems that provide non-commutative Grobner bases from classical algorithms.

[1]  Michael Pesch Gröbner Bases in Skew Polynomial Rings , 2005, Algorithmic Algebra and Logic.

[2]  Ferdinando Mora,et al.  Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.

[3]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[4]  Viktor Levandovskyy,et al.  Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation , 2005 .

[5]  V. Ufnarovski,et al.  Non-Commutative Gröbner Bases and Anick’s Resolution , 1999 .

[6]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[7]  Joachim Apel,et al.  An Extension of Buchberger's Algorithm and Calculations in Enveloping Fields of Lie Algebras , 1988, J. Symb. Comput..

[8]  Teo Mora,et al.  Groebner Bases in Non-Commutative Algebras , 1988, ISSAC.

[9]  Edward L. Green,et al.  Multiplicative Bases, Gröbner Bases, and Right Gröbner Bases , 2000, J. Symb. Comput..

[10]  Heinz Kredel,et al.  Solvable polynomial rings , 1993 .

[11]  V. Ufnarovski Gröbner Bases and Applications: Introduction to Noncommutative Gröbner Bases Theory , 1998 .

[12]  Lenwood S. Heath,et al.  Opal: A System for Computing Noncommutative Gröbner Bases , 1997, RTA.

[13]  Patrik Nordbeck,et al.  On some basic applications of Gröbner bases in non-commutative polynomial rings , 1998 .

[14]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[15]  Steve Linton,et al.  Computational and Geometric Aspects of Modern Algebra , 2000 .

[16]  Joachim Apel,et al.  Computational ideal theory in finitely generated extension rings , 2000, Theor. Comput. Sci..

[17]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[18]  F. Leon Pritchard,et al.  The Ideal Membership Problem in Non-Commutative Polynomial Rings , 1996, J. Symb. Comput..

[19]  G. Bergman The diamond lemma for ring theory , 1978 .

[20]  B. Keller Algorithms and orders for finding noncommutative Grobner bases , 1998 .

[21]  Seok-Jin Kang,et al.  Linear algebraic approach to Gröbner–Shirshov basis theory , 2007 .

[22]  Amnon Rosenmann An Algorithm for Constructing Gröbner and Free Schreier Bases in Free Group Algebras , 1993, J. Symb. Comput..

[23]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[24]  Gian-Carlo Rota,et al.  On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .

[25]  Leonid A. Bokut,et al.  Serre Relations and GRöBner-Shirshov Bases for Simple Lie Algebras I , 1996, Int. J. Algebra Comput..

[26]  Bruno Buchberger,et al.  Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal , 2006, J. Symb. Comput..

[27]  Matthias Aschenbrenner,et al.  Orderings of monomial ideals , 2003 .

[28]  R. Feynman An Operator calculus having applications in quantum electrodynamics , 1951 .

[29]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[30]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[31]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[32]  Bruno Salvy,et al.  Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..

[33]  Volker Weispfenning,et al.  Finite Gröbner bases in non-Noetherian skew polynomial rings , 1992, ISSAC '92.

[34]  Vesselin Drensky,et al.  Gröbner bases of ideals invariant under endomorphisms , 2006, J. Symb. Comput..

[35]  Birgit Reinert,et al.  On Gröbner bases in monoid and group rings , 2009, 0903.5044.

[36]  Anne Heyworth Rewriting as a Special Case of Noncommutative Groebner Basis Theory , 1999 .

[37]  Huishi Li,et al.  Noncommutative Gröbner Bases and Filtered-Graded Transfer , 2002 .

[38]  José Gómez-Torrecillas,et al.  Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups , 2003 .

[39]  Christopher D. Wensley,et al.  Complete involutive rewriting systems , 2007, J. Symb. Comput..

[40]  A. I. Shirshov Some Algorithmic Problems for ε-algebras , 2009 .