Continuous stabilization controllers for singular bilinear systems: The state feedback case

Global asymptotic stabilization for a class of singular bilinear systems is first studied in this paper. New approaches are developed by means of the LaSalle invariant principle for nonlinear systems. A new set of sufficient condition is first derived via the continuous static state feedback, the feedback not only guarantees the existence of solution but also the global asymptotical stabilization for the closed loop system.

[1]  Christopher D. Rahn,et al.  Stabilizability conditions for strictly bilinear systems with purely imaginary spectra , 1996, IEEE Trans. Autom. Control..

[2]  Harouna Souley Ali,et al.  Disturbance decoupled diagnostic observer for singular bilinear systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[3]  Min-Shin Chen,et al.  Exponential stabilization of a class of unstable bilinear systems , 2000, IEEE Trans. Autom. Control..

[4]  Shengyuan Xu,et al.  Robust stability and stabilization for singular systems with state delay and parameter uncertainty , 2002, IEEE Trans. Autom. Control..

[5]  Fan-Ren Chang,et al.  H∞ control for nonlinear descriptor systems , 2006, IEEE Trans. Autom. Control..

[6]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[7]  Michel Malabre,et al.  Robust H ∞ control for descriptor systems with non-linear uncertainties , 2003 .

[8]  Izumi Masubuchi,et al.  PII: S0005-1098(96)00193-8 , 2003 .

[9]  Frank L. Lewis,et al.  Analysis of singular bilinear systems using Walsh functions , 1991 .

[10]  Min-Shin Chen Exponential stabilization of a constrained bilinear system , 1998, Autom..

[11]  Hansheng Wu,et al.  Stability and robust stabilization of nonlinear descriptor systems with uncertainties , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  Michel Zasadzinski,et al.  Residual generator design for singular bilinear systems subjected to unmeasurable disturbances: an LMI approach , 2003, Autom..

[13]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[14]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[15]  Yufan Zheng,et al.  Dynamical Output Feedback Stabilization Of Mimo Bilinear Systems With Undamped Natural Response , 2003 .