Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts
暂无分享,去创建一个
[1] Nadia Heninger,et al. Approximate common divisors via lattices , 2011, IACR Cryptol. ePrint Arch..
[2] Peter Beelen,et al. Key equations for list decoding of Reed-Solomon codes and how to solve them , 2010, J. Symb. Comput..
[3] Arnold Schönhage,et al. Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.
[4] P. Busse. MULTIVARIATE LIST DECODING OF EVALUATION CODES WITH A GRÖBNER BASIS PERSPECTIVE , 2008 .
[5] T. Muldersa,et al. On lattice reduction for polynomial matrices , 2003 .
[6] Erich Kaltofen,et al. On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.
[7] Claude-Pierre Jeannerod,et al. On the complexity of polynomial matrix computations , 2003, ISSAC '03.
[8] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[9] George Labahn,et al. Computing minimal nullspace bases , 2012, ISSAC.
[10] Ian Goldberg,et al. Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.
[11] Sartaj Sahni,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[12] George Labahn,et al. Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..
[13] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[14] François Le Gall,et al. Powers of tensors and fast matrix multiplication , 2014, ISSAC.
[15] Claude-Pierre Jeannerod,et al. Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations , 2014, IEEE Transactions on Information Theory.
[16] Claude-Pierre Jeannerod,et al. Computing minimal interpolation bases , 2015, J. Symb. Comput..
[17] George Labahn,et al. Normal forms for general polynomial matrices , 2006, J. Symb. Comput..
[18] Soumojit Sarkar,et al. Normalization of row reduced matrices , 2011, ISSAC '11.
[19] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[20] Alexander Vardy,et al. Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[21] Robert T. Moenck,et al. Fast computation of GCDs , 1973, STOC.
[22] Peter Beelen,et al. Interpolation and List Decoding of Algebraic Codes , 2010 .
[23] Daniel Augot,et al. An Interpolation Procedure for List Decoding Reed–Solomon Codes Based on Generalized Key Equations , 2011, IEEE Transactions on Information Theory.
[24] Wei Zhou,et al. Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .
[25] Arne Storjohann,et al. On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..
[26] Amin Shokrollahi,et al. A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.
[27] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[28] Arne Storjohann. Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.
[29] Adhemar Bultheel,et al. A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.
[30] Venkatesan Guruswami,et al. Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.
[31] George Labahn,et al. Efficient algorithms for order basis computation , 2012, J. Symb. Comput..
[32] Alexander Vardy,et al. Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.
[33] Ron M. Roth,et al. Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.
[34] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[35] Claude-Pierre Jeannerod,et al. Solving structured linear systems of large displacement rank , 2006, ACCA.
[36] Paul Walton Purdom,et al. The Analysis of Algorithms , 1995 .
[37] Arne Storjohann,et al. Computing hermite forms of polynomial matrices , 2011, ISSAC '11.