Fast Computation of Minimal Interpolation Bases in Popov Form for Arbitrary Shifts

We compute minimal bases of solutions for a general interpolation problem, which encompasses Hermite-Pade approximation and constrained multivariate interpolation, and has applications in coding theory and security. This problem asks to find univariate polynomial relations between m vectors of size σ; these relations should have small degree with respect to an input degree shift. For an arbitrary shift, we propose an algorithm for the computation of an interpolation basis in shifted Popov normal form with a cost of O~(mω-1 σ) field operations, where ω is the exponent of matrix multiplication and the notation O~(·) indicates that logarithmic terms are omitted. Earlier works, in the case of Hermite-Pade approximation and in the general interpolation case, compute non-normalized bases. Since for arbitrary shifts such bases may have size Θ(m2 σ), the cost bound O~(mω-1 σ) was feasible only with restrictive assumptions on the shift that ensure small output sizes. The question of handling arbitrary shifts with the same complexity bound was left open. To obtain the target cost for any shift, we strengthen the properties of the output bases, and of those obtained during the course of the algorithm: all the bases are computed in shifted Popov form, whose size is always O(m σ). Then, we design a divide-and-conquer scheme. We recursively reduce the initial interpolation problem to sub-problems with more convenient shifts by first computing information on the degrees of the intermediate bases.

[1]  Nadia Heninger,et al.  Approximate common divisors via lattices , 2011, IACR Cryptol. ePrint Arch..

[2]  Peter Beelen,et al.  Key equations for list decoding of Reed-Solomon codes and how to solve them , 2010, J. Symb. Comput..

[3]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[4]  P. Busse MULTIVARIATE LIST DECODING OF EVALUATION CODES WITH A GRÖBNER BASIS PERSPECTIVE , 2008 .

[5]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[6]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[7]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[8]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[9]  George Labahn,et al.  Computing minimal nullspace bases , 2012, ISSAC.

[10]  Ian Goldberg,et al.  Optimally Robust Private Information Retrieval , 2012, USENIX Security Symposium.

[11]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[12]  George Labahn,et al.  Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs , 2000, SIAM J. Matrix Anal. Appl..

[13]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[14]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[15]  Claude-Pierre Jeannerod,et al.  Faster Algorithms for Multivariate Interpolation With Multiplicities and Simultaneous Polynomial Approximations , 2014, IEEE Transactions on Information Theory.

[16]  Claude-Pierre Jeannerod,et al.  Computing minimal interpolation bases , 2015, J. Symb. Comput..

[17]  George Labahn,et al.  Normal forms for general polynomial matrices , 2006, J. Symb. Comput..

[18]  Soumojit Sarkar,et al.  Normalization of row reduced matrices , 2011, ISSAC '11.

[19]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[20]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[21]  Robert T. Moenck,et al.  Fast computation of GCDs , 1973, STOC.

[22]  Peter Beelen,et al.  Interpolation and List Decoding of Algebraic Codes , 2010 .

[23]  Daniel Augot,et al.  An Interpolation Procedure for List Decoding Reed–Solomon Codes Based on Generalized Key Equations , 2011, IEEE Transactions on Information Theory.

[24]  Wei Zhou,et al.  Fast Order Basis and Kernel Basis Computation and Related Problems , 2013 .

[25]  Arne Storjohann,et al.  On lattice reduction for polynomial matrices , 2003, J. Symb. Comput..

[26]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[27]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[28]  Arne Storjohann Notes on computing minimal approximant bases , 2006, Challenges in Symbolic Computation Software.

[29]  Adhemar Bultheel,et al.  A general module theoretic framework for vector M-Padé and matrix rational interpolation , 2005, Numerical Algorithms.

[30]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[31]  George Labahn,et al.  Efficient algorithms for order basis computation , 2012, J. Symb. Comput..

[32]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[33]  Ron M. Roth,et al.  Efficient decoding of Reed-Solomon codes beyond half the minimum distance , 2000, IEEE Trans. Inf. Theory.

[34]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[35]  Claude-Pierre Jeannerod,et al.  Solving structured linear systems of large displacement rank , 2006, ACCA.

[36]  Paul Walton Purdom,et al.  The Analysis of Algorithms , 1995 .

[37]  Arne Storjohann,et al.  Computing hermite forms of polynomial matrices , 2011, ISSAC '11.