Efficient chromosome encoding and problem-specific mutation methods for the flexible bay facility layout problem

Two chromosome encoding methods are compared for finding solutions to the nondeterministic polynomial-time hard flexible bay facilities layout problem via genetic algorithm (GA). Both methods capitalize on the random key GA approach to produce chromosomes that are viable for any combination of allele values. In addition, the effect of four problem-specific mutation methods is assessed for one of the encoding methods. The novel mutation methods are shown to have a substantial effect on performance. Optimal GA parameter settings for the problem-specific mutation methods are found empirically

[1]  John S. Usher,et al.  Facility layout using swarm intelligence , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[2]  John A. Chandy,et al.  Parallel simulated annealing strategies for VLSI cell placement , 1996, Proceedings of 9th International Conference on VLSI Design.

[3]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[4]  M. Bazaraa Computerized Layout Design: A Branch and Bound Approach , 1975 .

[5]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[8]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[9]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[10]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[11]  Marc Goetschalckx,et al.  An interactive layout heuristic based on hexagonal adjacency graphs , 1992 .

[12]  J. A. Bland LAYOUT OF FACILITIES USING AN ANT SYSTEM APPROACH , 1999 .

[13]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[14]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[15]  Elwood S. Buffa,et al.  A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities , 1963 .

[16]  Stephanie Forrest,et al.  Genetic algorithms, operators, and DNA fragment assembly , 1995, Machine Learning.

[17]  Christopher R. Houck,et al.  A Genetic Algorithm for Function Optimization: A Matlab Implementation , 2001 .