Why should anyone care about computing with anyons?

In this article we present a pedagogical introduction of the main ideas and recent advances in the area of topological quantum computation. We give an overview of the concept of anyons and their exotic statistics, present various models that exhibit topological behaviour and establish their relation to quantum computation. Possible directions for the physical realization of topological systems and the detection of anyonic behaviour are elaborated.

[1]  M. Freedman,et al.  Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. , 2004, Physical review letters.

[2]  Jiannis K. Pachos,et al.  QUANTUM COMPUTATION WITH ABELIAN ANYONS ON THE HONEYCOMB LATTICE , 2005, quant-ph/0511273.

[3]  L. Kauffman Knots And Physics , 1991 .

[4]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[5]  P. Morse Annals of Physics , 1957, Nature.

[6]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[7]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[8]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[9]  E. Fradkin,et al.  Realizing non-Abelian statistics in time-reversal-invariant systems , 2005 .

[10]  Physics Letters , 1962, Nature.

[11]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[12]  Stephen S. Bullock,et al.  Qudit surface codes and gauge theory with finite cyclic groups , 2007 .

[13]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[14]  Louis H. Kauffman,et al.  $q$ - Deformed Spin Networks, Knot Polynomials and Anyonic Topological Quantum Computation , 2006 .

[15]  Xiao-Gang Wen Quantum orders in an exact soluble model. , 2003, Physical review letters.

[16]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  L. B. Ioffe,et al.  Non-Abelian Chern–Simons models with discrete gauge groups on a lattice , 2005 .

[18]  X. Wen Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons , 2004 .

[19]  V. Turaev Quantum invariants of knots and three manifolds , 1994 .

[20]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[21]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[22]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[23]  Aharanov-Bohm interference and fractional statistics in a quantum Hall interferometer. , 2006, Physical review letters.

[24]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[25]  Frank Wilczek,et al.  Fractional Statistics and the Quantum Hall Effect , 1984 .

[26]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[27]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[28]  Kevin Walker,et al.  A class of P,T-invariant topological phases of interacting electrons , 2003, cond-mat/0307511.

[29]  Jain,et al.  Composite-fermion approach for the fractional quantum Hall effect. , 1989, Physical review letters.

[30]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[31]  Manipulation of single neutral atoms in optical lattices (5 pages) , 2006, quant-ph/0605245.

[32]  J. Pachos The wavefunction of an anyon , 2006, quant-ph/0605068.

[33]  F. A. Bais,et al.  Quantum groups and non-Abelian braiding in quantum Hall systems , 2001 .

[34]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[35]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[36]  J W Alexander,et al.  A Lemma on Systems of Knotted Curves. , 1923, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[38]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[39]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[40]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[41]  B. Rosenow,et al.  Influence of interactions on flux and back-gate period of quantum Hall interferometers. , 2006, Physical review letters.

[42]  Frank Wilczek,et al.  2n-quasihole states realize 2n−1-dimensional spinor braiding statistics in paired quantum Hall states , 1996 .

[43]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[44]  N. Read,et al.  Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level , 1998, cond-mat/9809384.

[45]  Parsa Bonderson,et al.  Probing non-Abelian statistics with quasiparticle interferometry. , 2006, Physical review letters.

[46]  Ady Stern,et al.  Proposed experiments to probe the non-Abelian nu = 5/2 quantum hall state. , 2006, Physical review letters.

[47]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[48]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[49]  Parsa Bonderson,et al.  Detecting non-Abelian statistics in the nu = 5/2 fractional quantum hall state. , 2006, Physical review letters.

[50]  F. Camino,et al.  Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics , 2005, cond-mat/0502406.

[51]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[52]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[53]  B. Halperin Statistics of quasiparticles and the hierarchy of fractional quantized Hall states , 1984 .

[54]  Chetan Nayak,et al.  Extended hubbard model with ring exchange: a route to a non-Abelian topological phase. , 2005, Physical review letters.

[55]  Zohar Nussinov,et al.  A symmetry principle for topological quantum order , 2007, cond-mat/0702377.