Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using Fast Fourier Transforms to compute such cross-correlations and their associated pair-galaxy bias bpg and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial Halo Occupation Distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bpg and Qeff at pair separation of ~ 2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter halos. We also see strong anisotropy in the bpg and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line-of-sight due to Finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

[1]  J. Comparat,et al.  GALAXY THREE-POINT CORRELATION FUNCTIONS AND HALO/SUBHALO MODELS , 2016, 1608.03660.

[2]  Ashley J. Ross,et al.  Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies , 2016, 1607.06097.

[3]  D. Eisenstein,et al.  Improving initial conditions for cosmological N-body simulations , 2016, 1605.02333.

[4]  A. Ross,et al.  Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions , 2016, 1603.06814.

[5]  T. Matsubara,et al.  Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging survey , 2015, 1512.08352.

[6]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[7]  Samuel W. Skillman,et al.  THE CONCENTRATION DEPENDENCE OF THE GALAXY–HALO CONNECTION: MODELING ASSEMBLY BIAS WITH ABUNDANCE MATCHING , 2015, 1510.05651.

[8]  A. Bolton,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.

[9]  R. Cen,et al.  DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS , 2015, 1509.05039.

[10]  A. Leauthaud,et al.  Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring , 2015, 1503.05200.

[11]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[12]  R. Nichol,et al.  Modelling the redshift-space three-point correlation function in SDSS-III , 2014, 1409.7389.

[13]  Donald P. Schneider,et al.  The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.

[14]  K. Dawson,et al.  Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.

[15]  J. Brownstein,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.

[16]  Hal Finkel,et al.  COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM , 2013, 1311.6444.

[17]  Andrew P. Hearin,et al.  Galaxy assembly bias: a significant source of systematic error in the galaxy–halo relationship , 2013, 1311.1818.

[18]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[19]  A. Ross,et al.  Primordial non-Gaussianity in the bispectra of large-scale structure , 2013, 1310.7482.

[20]  W. Percival,et al.  THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION , 2012, 1212.1211.

[21]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.

[22]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[23]  A. Slosar,et al.  Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.

[24]  Leiden University,et al.  The effects of halo alignment and shape on the clustering of galaxies , 2012, 1203.5335.

[25]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[26]  V. Springel,et al.  Dark matter halo occupation: environment and clustering , 2011, 1109.4169.

[27]  M. Blanton,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.

[28]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[29]  Michal Maciejewski,et al.  Haloes gone MAD: The Halo-Finder Comparison Project , 2011, 1104.0949.

[30]  F. Marin THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.

[31]  U. Seljak,et al.  Primordial non-Gaussianity in the bispectrum of the halo density field , 2010, 1011.1513.

[32]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[33]  L. Verde,et al.  A halo model with environment dependence: theoretical considerations , 2010, 1008.4583.

[34]  A. Connolly,et al.  THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: LUMINOSITY AND COLOR DEPENDENCE IN REDSHIFT AND PROJECTED SPACE , 2010, 1007.2414.

[35]  E.P.S. Shellard,et al.  Shape of primordial non-Gaussianity and the CMB bispectrum , 2008, 0812.3413.

[36]  B. Reid,et al.  CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.

[37]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[38]  S. More,et al.  Modelling galaxy-galaxy weak lensing with Sloan Digital Sky Survey groups , 2008, 0807.4934.

[39]  F. Castander,et al.  Clustering of luminous red galaxies – III. Baryon acoustic peak in the three-point correlation , 2008 .

[40]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[41]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[42]  P. Norberg,et al.  Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment? , 2007, 0707.3445.

[43]  Shirley Ho,et al.  LUMINOUS RED GALAXY POPULATION IN CLUSTERS AT 0.2⩽ z ⩽0.6 , 2007, 0706.0727.

[44]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[45]  Felipe Marin,et al.  Modeling the Galaxy Three-Point Correlation Function , 2007, 0704.0255.

[46]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[47]  Robert C. Nichol,et al.  The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.

[48]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[49]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[50]  D. Weinberg,et al.  Breaking the Degeneracies between Cosmology and Galaxy Bias , 2005, astro-ph/0512071.

[51]  J. Tinker,et al.  From Galaxy-Galaxy Lensing to Cosmological Parameters , 2005, astro-ph/0511580.

[52]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[53]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[54]  E. Gaztañaga,et al.  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[55]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[56]  J. Brinkmann,et al.  The Small-Scale Clustering of Luminous Red Galaxies via Cross-Correlation Techniques , 2004, astro-ph/0411559.

[57]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[58]  M. Blanton,et al.  The Scale Dependence of Relative Galaxy Bias: Encouragement for the “Halo Model” Description , 2004, astro-ph/0411037.

[59]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[60]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[61]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[62]  Y. Jing,et al.  The Three-Point Correlation Function of Galaxies Determined from the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0311585.

[63]  H. Mo,et al.  The dependence of the galaxy luminosity function on large-scale environment , 2003, astro-ph/0310147.

[64]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[65]  Bhasker K. Moorthy,et al.  The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.

[66]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[67]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[68]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[69]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[70]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[71]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[72]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[73]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[74]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[75]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[76]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[77]  Matias Zaldarriaga,et al.  CMBFAST for Spatially Closed Universes , 1999, astro-ph/9911219.

[78]  Hubble Fellow,et al.  The Time Evolution of Bias , 1998, astro-ph/9804067.

[79]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[80]  A. Hamilton Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[81]  U. Seljak,et al.  Integral Solution for the Microwave Background Anisotropies in Nonflat Universes , 1997, astro-ph/9704265.

[82]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[83]  J. Fry The Evolution of Bias , 1996 .

[84]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[85]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[86]  J. Frieman,et al.  Bias and high-order galaxy correlation functions in the APM galaxy survey , 1993, astro-ph/9407079.

[87]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[88]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[89]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[90]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[91]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[92]  D. Shanno,et al.  Optimal conditioning of quasi-Newton methods , 1970 .

[93]  Rebecca Whitaker Msfc The Evolving Universe , 2008 .

[94]  C. Caldwell Mathematics of Computation , 1999 .

[95]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..