Using galaxy pairs to investigate the three-point correlation function in the squeezed limit
暂无分享,去创建一个
[1] J. Comparat,et al. GALAXY THREE-POINT CORRELATION FUNCTIONS AND HALO/SUBHALO MODELS , 2016, 1608.03660.
[2] Ashley J. Ross,et al. Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies , 2016, 1607.06097.
[3] D. Eisenstein,et al. Improving initial conditions for cosmological N-body simulations , 2016, 1605.02333.
[4] A. Ross,et al. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions , 2016, 1603.06814.
[5] T. Matsubara,et al. Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging survey , 2015, 1512.08352.
[6] Erik Tollerud,et al. Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.
[7] Samuel W. Skillman,et al. THE CONCENTRATION DEPENDENCE OF THE GALAXY–HALO CONNECTION: MODELING ASSEMBLY BIAS WITH ABUNDANCE MATCHING , 2015, 1510.05651.
[8] A. Bolton,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS CMASS galaxies in the Final Data Release , 2015, 1509.06404.
[9] R. Cen,et al. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS , 2015, 1509.05039.
[10] A. Leauthaud,et al. Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring , 2015, 1503.05200.
[11] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[12] R. Nichol,et al. Modelling the redshift-space three-point correlation function in SDSS-III , 2014, 1409.7389.
[13] Donald P. Schneider,et al. The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity , 2014, 1407.5668.
[14] K. Dawson,et al. Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.
[15] J. Brownstein,et al. THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. II. ASTROPHYSICAL AND COSMOLOGICAL CONSTRAINTS , 2014, 1407.1856.
[16] Hal Finkel,et al. COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM , 2013, 1311.6444.
[17] Andrew P. Hearin,et al. Galaxy assembly bias: a significant source of systematic error in the galaxy–halo relationship , 2013, 1311.1818.
[18] J. Brinkmann,et al. THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.
[19] A. Ross,et al. Primordial non-Gaussianity in the bispectra of large-scale structure , 2013, 1310.7482.
[20] W. Percival,et al. THE CLUSTERING OF GALAXIES IN THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOSITY AND COLOR DEPENDENCE AND REDSHIFT EVOLUTION , 2012, 1212.1211.
[21] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.
[22] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[23] A. Slosar,et al. Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7 , 2012, 1207.1120.
[24] Leiden University,et al. The effects of halo alignment and shape on the clustering of galaxies , 2012, 1203.5335.
[25] Risa H. Wechsler,et al. THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.
[26] V. Springel,et al. Dark matter halo occupation: environment and clustering , 2011, 1109.4169.
[27] M. Blanton,et al. COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.
[28] Tristan L. Smith,et al. NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.
[29] Michal Maciejewski,et al. Haloes gone MAD: The Halo-Finder Comparison Project , 2011, 1104.0949.
[30] F. Marin. THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.
[31] U. Seljak,et al. Primordial non-Gaussianity in the bispectrum of the halo density field , 2010, 1011.1513.
[32] R. Nichol,et al. THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.
[33] L. Verde,et al. A halo model with environment dependence: theoretical considerations , 2010, 1008.4583.
[34] A. Connolly,et al. THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: LUMINOSITY AND COLOR DEPENDENCE IN REDSHIFT AND PROJECTED SPACE , 2010, 1007.2414.
[35] E.P.S. Shellard,et al. Shape of primordial non-Gaussianity and the CMB bispectrum , 2008, 0812.3413.
[36] B. Reid,et al. CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.
[37] Case Western Reserve University,et al. HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.
[38] S. More,et al. Modelling galaxy-galaxy weak lensing with Sloan Digital Sky Survey groups , 2008, 0807.4934.
[39] F. Castander,et al. Clustering of luminous red galaxies – III. Baryon acoustic peak in the three-point correlation , 2008 .
[40] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[41] D. Huterer,et al. Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.
[42] P. Norberg,et al. Void Statistics in Large Galaxy Redshift Surveys: Does Halo Occupation of Field Galaxies Depend on Environment? , 2007, 0707.3445.
[43] Shirley Ho,et al. LUMINOUS RED GALAXY POPULATION IN CLUSTERS AT 0.2⩽ z ⩽0.6 , 2007, 0706.0727.
[44] O. Lahav,et al. Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.
[45] Felipe Marin,et al. Modeling the Galaxy Three-Point Correlation Function , 2007, 0704.0255.
[46] I. Zehavi,et al. Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.
[47] Robert C. Nichol,et al. The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.
[48] S. White,et al. Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.
[49] R. Wechsler,et al. The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.
[50] D. Weinberg,et al. Breaking the Degeneracies between Cosmology and Galaxy Bias , 2005, astro-ph/0512071.
[51] J. Tinker,et al. From Galaxy-Galaxy Lensing to Cosmological Parameters , 2005, astro-ph/0511580.
[52] J. Brinkmann,et al. Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.
[53] S. White,et al. The age dependence of halo clustering , 2005, astro-ph/0506510.
[54] E. Gaztañaga,et al. The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.
[55] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[56] J. Brinkmann,et al. The Small-Scale Clustering of Luminous Red Galaxies via Cross-Correlation Techniques , 2004, astro-ph/0411559.
[57] R. Nichol,et al. The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.
[58] M. Blanton,et al. The Scale Dependence of Relative Galaxy Bias: Encouragement for the “Halo Model” Description , 2004, astro-ph/0411037.
[59] J. Frieman,et al. The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.
[60] R. Davé,et al. Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.
[61] J. Brinkmann,et al. The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.
[62] Y. Jing,et al. The Three-Point Correlation Function of Galaxies Determined from the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0311585.
[63] H. Mo,et al. The dependence of the galaxy luminosity function on large-scale environment , 2003, astro-ph/0310147.
[64] Potsdam,et al. The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.
[65] Bhasker K. Moorthy,et al. The First Data Release of the Sloan Digital Sky Survey , 2003, astro-ph/0305492.
[66] R. Nichol,et al. On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.
[67] C. Baugh,et al. The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.
[68] R. Sheth,et al. Halo Models of Large Scale Structure , 2002, astro-ph/0206508.
[69] Alexander S. Szalay,et al. Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .
[70] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[71] D. Weinberg,et al. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.
[72] R. Wechsler,et al. The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .
[73] Walter A. Siegmund,et al. The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.
[74] B. Jain,et al. How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.
[75] J. Peacock,et al. Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.
[76] U. Seljak. Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.
[77] Matias Zaldarriaga,et al. CMBFAST for Spatially Closed Universes , 1999, astro-ph/9911219.
[78] Hubble Fellow,et al. The Time Evolution of Bias , 1998, astro-ph/9804067.
[79] D. Weinberg,et al. Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.
[80] A. Hamilton. Linear redshift distortions: A Review , 1997, astro-ph/9708102.
[81] U. Seljak,et al. Integral Solution for the Microwave Background Anisotropies in Nonflat Universes , 1997, astro-ph/9704265.
[82] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[83] J. Fry. The Evolution of Bias , 1996 .
[84] U. Seljak,et al. A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.
[85] S. White,et al. The Structure of cold dark matter halos , 1995, astro-ph/9508025.
[86] J. Frieman,et al. Bias and high-order galaxy correlation functions in the APM galaxy survey , 1993, astro-ph/9407079.
[87] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[88] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[89] Phillip James Edwin Peebles,et al. Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .
[90] Phillip James Edwin Peebles,et al. Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .
[91] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[92] D. Shanno,et al. Optimal conditioning of quasi-Newton methods , 1970 .
[93] Rebecca Whitaker Msfc. The Evolving Universe , 2008 .
[94] C. Caldwell. Mathematics of Computation , 1999 .
[95] M. J. D. Powell,et al. An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..