A review and classification of the existing models of cyanobacteria

Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.

[1]  Wu-Seng Lung,et al.  Modeling blue-green algal blooms in the lower neuse river , 1988 .

[2]  T. T. Bannister Quantitative description of steady state, nutrient‐saturated algal growth, including adaptation , 1979 .

[3]  Peter A. Whigham,et al.  Modelling Microcystis aeruginosa bloom dynamics in the Nakdong River by means of evolutionary computation and statistical approach , 2003 .

[4]  J. Passarge,et al.  Modelling vertical migration of the cyanobacterium Microcystis , 1997, Hydrobiologia.

[5]  A. E. Irish,et al.  Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates , 1997, Hydrobiologia.

[6]  Shuichi Aiba,et al.  Simulation of water-bloom in a eutrophic lake—III. Modeling the vertical migration and growth of Microcystis aeruginosa , 1983 .

[7]  A. E. Irish,et al.  Sensitivity analysis of PROTECH, a new approach in phytoplankton modelling , 1999, Hydrobiologia.

[8]  Jean-Marc Thebault,et al.  A model of phytoplankton development in the Lot River (France).: Simulations of scenarios , 1999 .

[9]  B. D. Boer,et al.  A moving cell model of the dissolved oxygen and phytoplankton dynamics in rivers / Modèle à cellule mobile des dynamiques de l'oxygène et de phytoplancton dissous dans les rivières , 1979 .

[10]  David P. Hamilton,et al.  Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa , 2000 .

[11]  E. Laws,et al.  A microalgal growth model , 1990 .

[12]  F. Recknagel ANNA – Artificial Neural Network model for predicting species abundance and succession of blue-green algae , 1997, Hydrobiologia.

[13]  G. Hornberger,et al.  Modelling algal behaviour in the river thames , 1984 .

[14]  P. G. Whitehead,et al.  Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance and neural network techniques , 1997, Hydrobiologia.

[15]  A. J. D. Ferguson,et al.  The role of modelling in the control of toxic blue-green algae , 1997, Hydrobiologia.

[16]  J. A. Elliott,et al.  Predicting the spatial dominance of phytoplankton in a light limited and incompletely mixed eutrophic water column using the PROTECH model , 2002 .

[17]  A. E. Irish,et al.  A new simulation of cyanobacterial underwater movement (SCUM'96) , 1996 .

[18]  A. Cloot,et al.  Modelling algal blooms in the middle vaal river: A site specific approach , 1997 .

[19]  J. A. Elliott,et al.  The effects of vertical mixing on a phytoplankton community: a modelling approach to the intermediate disturbance hypothesis , 2001 .

[20]  Adrian McDonald,et al.  Modelling the growth of cyanobacteria (GrowSCUM) , 1995 .

[21]  J. D. Giles,et al.  Dynamical model of buoyant cyanobacteria , 1997, Hydrobiologia.

[22]  Jacco C. Kromkamp,et al.  A computer model of buoyancy and vertical migration in cyanobacteria , 1990 .

[23]  Ä. Bilaletdin,et al.  Modelling phytoplankton dynamics of the eutrophic Lake Võrtsjärv, Estonia , 1999, Hydrobiologia.

[24]  H. R. Maier,et al.  Modelling Cyanbacteria (blue-green algae) in the River Murray using artificial neural networks , 1997 .

[25]  Shuichi Aiba,et al.  Simulation of water-bloom in a eutrophic lake—II. Reassessment of buoyancy, gas vacuole and Turgor pressure of Microcystis aeruginosa , 1983 .

[26]  C. S. Reynolds,et al.  Growth and buoyancy of Microcystis aeruginosa Kütz. emend. Elenkin in a shallow eutrophic lake , 1973, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  G. K. Young,et al.  Phosphorus Reduction for Control of Algae , 1985 .

[28]  Colin S. Reynolds,et al.  Temporal scales of variability in pelagic environments and the response of phytoplankton , 1990 .

[29]  V. Krivtsov,et al.  Examination of the phytoplankton of Rostherne Mere using a simulation mathematical model , 2004, Hydrobiologia.

[30]  Alan Howard,et al.  Computer simulation modelling of buoyancy change in Microcystis , 1997, Hydrobiologia.

[31]  W. J. O'brien,et al.  The Dynamics of Nutrient Limitation of Phytoplankton Algae: A Model Reconsidered , 1974 .

[32]  D. R. Bingham,et al.  Nitrogen cycle and algal growth modeling , 1984 .

[33]  J. A. Elliott,et al.  An investigation of dominance in phytoplankton using the PROTECH model , 2001 .

[34]  A. E. Irish,et al.  Exploring the potential of the PROTECH model to investigate phytoplankton community theory , 1999, Hydrobiologia.