Visibly Pushdown Transducers ⋆

Visibly pushdown automata have been recently introduced by Alur and Madhusudan as a subclass of pushdown automata. This class enjoys nice properties such as closure under all Boolean operations and the decidability of language inclusion. Along the same line, we introduce here visibly pushdown transducers as a subclass of pushdown transducers. We study properties of those transducers and identify subclasses with useful properties like decidability of type checking as well as preservation of regularity of visibly pushdown languages.

[1]  Jacques Sakarovitch,et al.  On the Decidability of Bounded Valuedness for Transducers , 2008, MFCS.

[2]  Swarat Chaudhuri,et al.  Temporal Reasoning for Procedural Programs , 2010, VMCAI.

[3]  Joachim Niehren,et al.  Streaming tree automata , 2008, Inf. Process. Lett..

[4]  Joachim Niehren,et al.  Streaming Tree Automata and XPath , 2009, Workshop on Non-Classical Models for Automata and Applications.

[5]  Parosh Aziz Abdulla,et al.  Tree regular model checking: A simulation-based approach , 2006, J. Log. Algebraic Methods Program..

[6]  Rajeev Motwani,et al.  Introduction to automata theory, languages, and computation - international edition, 2nd Edition , 2003 .

[7]  Andreas Weber,et al.  Decomposing Finite-Valued Transducers and Deciding Their Equivalence , 1993, SIAM J. Comput..

[8]  Mahesh Viswanathan,et al.  Query Automata for Nested Words , 2009, MFCS.

[9]  Stefanie Scherzinger,et al.  Attribute grammars for scalable query processing on XML streams , 2005, The VLDB Journal.

[10]  Paul J. Walmsley,et al.  XML Schema Part 0: Primer Second Edition , 2004 .

[11]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[12]  Sebastian Maneth,et al.  The Macro Tree Transducer Hierarchy Collapses for Functions of Linear Size Increase , 2003, FSTTCS.

[13]  Jean-Marc Talbot,et al.  Properties of Visibly Pushdown Transducers , 2010, MFCS.

[14]  Frank Neven,et al.  Frontiers of tractability for typechecking simple XML transformations , 2004, PODS.

[15]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[16]  Joost Engelfriet,et al.  Macro Tree Transducers , 1985, J. Comput. Syst. Sci..

[17]  Frank Neven,et al.  Structured Document Transformations Based on XSL , 1999, DBPL.

[18]  Thomas Schwentick,et al.  On the Complexity of Equational Horn Clauses , 2005, CADE.

[19]  Frank Neven,et al.  On the complexity of typechecking top-down XML transformations , 2005, Theor. Comput. Sci..

[20]  Tero Harju,et al.  Some Decision Problems Concerning Semilinearity and Commutation , 2002, J. Comput. Syst. Sci..

[21]  Joost Engelfriet,et al.  On Tree Transducers for Partial Functions , 1978, Inf. Process. Lett..

[22]  James Clark,et al.  XSL Transformations (XSLT) Version 1.0 , 1999 .

[23]  Géraud Sénizergues,et al.  The Equivalence Problem for Deterministic Pushdown Automata is Decidable , 1997, ICALP.

[24]  Richard Edwin Stearns,et al.  A Regularity Test for Pushdown Machines , 1967, Inf. Control..

[25]  Rajeev Alur Marrying Words and Trees , 2007, CSR.

[26]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[27]  Joost Engelfriet,et al.  Macro Tree Translations of Linear Size Increase are MSO Definable , 2003, SIAM J. Comput..

[28]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[29]  Jirí Srba,et al.  Height-Deterministic Pushdown Automata , 2007, MFCS.

[30]  Helmut Seidl,et al.  Equivalence of finite-valued tree transducers is decidable , 1994, Mathematical systems theory.

[31]  Timothy V. Griffiths The unsolvability of the Equivalence Problem for Λ-Free nondeterministic generalized machines , 1968, JACM.

[32]  Amir Pnueli,et al.  Beyond Regular Model Checking , 2001, FSTTCS.

[33]  Joachim Niehren,et al.  Earliest Query Answering for Deterministic Nested Word Automata , 2009, FCT.

[34]  Juha Kortelainen,et al.  On systems of word equations with simple loop sets , 2007, Theor. Comput. Sci..

[35]  Christian Choffrut,et al.  Une Caracterisation des Fonctions Sequentielles et des Fonctions Sous-Sequentielles en tant que Relations Rationnelles , 1977, Theor. Comput. Sci..

[36]  Scott Boag,et al.  XQuery 1.0 : An XML Query Language , 2007 .

[37]  Andreas Weber,et al.  On the valuedness of finite transducers , 1990, Acta Informatica.

[38]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[39]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[40]  Nguyen Van Tang A Tighter Bound for the Determinization of Visibly Pushdown Automata , 2009, INFINITY.

[41]  Victor Vianu,et al.  Validating streaming XML documents , 2002, PODS.

[42]  Karel Culik,et al.  The Equivalence of Finite Valued Transducers (on HDTOL Languages) is Decidable , 1986, MFCS.

[43]  Marcel Paul Schützenberger,et al.  Sur les relations rationnelles , 1975, Automata Theory and Formal Languages.

[44]  Helmut Seidl,et al.  XML type checking with macro tree transducers , 2005, PODS.

[45]  Jacques Sakarovitch,et al.  Lexicographic Decomposition of k-Valued Transducers , 2010, Theory of Computing Systems.

[46]  Jacques Sakarovitch,et al.  Squaring transducers: an efficient procedure for deciding functionality and sequentiality , 2000, Theor. Comput. Sci..

[47]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[48]  Thomas Schwentick,et al.  Query automata over finite trees , 2002, Theor. Comput. Sci..

[49]  Andreas Weber,et al.  A Decomposition Theorem for Finite-Valued Tranducers and an Application to the Equivalence Problem , 1988, MFCS.

[50]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[51]  Reinhard Klemm,et al.  Economy of Description for Single-Valued Transducers , 1994, Inf. Comput..

[52]  Helmut Seidl,et al.  Macro forest transducers , 2004, Inf. Process. Lett..

[53]  Wojciech Plandowski,et al.  Testing Equivalence of Morphisms on Context-Free Languages , 1994, ESA.

[54]  Srinivasan Venkatesh,et al.  Visibly Pushdown Transducers for Approximate Validation of Streaming XML , 2008, FoIKS.

[55]  Marcel Paul Schützenberger,et al.  Sur les Relations Rationnelles Entre Monoides Libres , 1976, Theor. Comput. Sci..

[56]  Neil Immerman,et al.  First-Order and Temporal Logics for Nested Words , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[57]  Frank Neven,et al.  Typechecking Top-Down Uniform Unranked Tree Transducers , 2003, ICDT.

[58]  Joachim Niehren,et al.  Equivalence of Deterministic Nested Word to Word Transducers , 2009, FCT.

[59]  Makoto Murata,et al.  Hedge automata: a formal model for xml schemata , 1999 .

[60]  David Megginson,et al.  Simple API for XML , 1998 .

[61]  Dan Suciu,et al.  Typechecking for XML transformers , 2000, PODS '00.

[62]  Marcus Nilsson,et al.  Regular Model Checking , 2000, CAV.

[63]  Helmut Seidl,et al.  Single-Valuedness of Tree Transducers is Decidable in Polynomial Time , 1992, Theor. Comput. Sci..

[64]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[65]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[66]  Frédéric Magniez,et al.  The Streaming Complexity of Validating XML Documents , 2010, ArXiv.

[67]  Frank Neven,et al.  Typechecking top-down XML transformations: Fixed input or output schemas , 2006, Inf. Comput..

[68]  Mahesh Viswanathan,et al.  Visibly pushdown automata for streaming XML , 2007, WWW '07.

[69]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[70]  Jochen Hoenicke,et al.  Nested interpolants , 2010, POPL '10.

[71]  Cristina Sirangelo,et al.  Constant-Memory Validation of Streaming XML Documents Against DTDs , 2007, ICDT.