Space Use and Movement of a Neotropical Top Predator: The Endangered Jaguar

Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina. We assessed home range and movement parameters of range resident animals and compared AKDE estimates with kernel density estimates (KDE). We accounted for differential space use and movement among individuals, sex, region, and habitat quality. Thirty-three (80%) of collared jaguars were range resident. Home range estimates using AKDE were 1.02 to 4.80 times larger than KDE estimates that did not consider autocorrelation. Males exhibited larger home ranges, more directional movement paths, and a trend towards larger distances traveled per day. Jaguars with the largest home ranges occupied the Atlantic Forest, a biome with high levels of deforestation and high human population density. Our results fill a gap in the knowledge of the species’ ecology with an aim towards better conservation of this endangered/critically endangered carnivore—the top predator in the Neotropics.

[1]  Rahel Sollmann,et al.  Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil , 2011 .

[2]  Norman L. Christensen,et al.  Sex matters: Modeling male and female habitat differences for jaguar conservation , 2010 .

[3]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[4]  Göran Ericsson,et al.  From migration to nomadism: movement variability in a northern ungulate across its latitudinal range. , 2012, Ecological applications : a publication of the Ecological Society of America.

[5]  C H Fleming,et al.  Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. , 2015, Ecology.

[6]  George R. Hughes,et al.  Wild Cats – Status Survey and Conservation Action Plan , 1998, Biodiversity & Conservation.

[7]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[8]  Animal Movement Across Scales Lars-Anders Hansson Susanne Å , 2015, Animal Behaviour.

[9]  Paul G. Blackwell,et al.  Exact Bayesian inference for animal movement in continuous time , 2016 .

[10]  Peter Leimgruber,et al.  From Fine-Scale Foraging to Home Ranges: A Semivariance Approach to Identifying Movement Modes across Spatiotemporal Scales , 2014, The American Naturalist.

[11]  Peter Leimgruber,et al.  Non‐Markovian maximum likelihood estimation of autocorrelated movement processes , 2014 .

[12]  G. Schaller The Serengeti Lion: A Study of Predator-Prey Relations , 1972 .

[13]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[14]  William W. Taylor,et al.  A Framework for Evaluating the Effects of Human Factors on Wildlife Habitat: the Case of Giant Pandas , 1999 .

[15]  E. Gese,et al.  Spatial Ecology and Social Interactions of Jaguars (Panthera Onca) in the Southern Pantanal, Brazil , 2009 .

[16]  R. May,et al.  Spatio-temporal ranging behaviour and its relevance to foraging strategies in wide-ranging wolverines , 2010 .

[17]  Yiğit Subaşı,et al.  Maximum-entropy description of animal movement. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. L. Gittleman,et al.  Human Population Density and Extinction Risk in the World's Carnivores , 2004, PLoS biology.

[19]  A. Jansen Bayesian Methods for Ecology , 2009 .

[20]  Kent H. Redford,et al.  Planning to Save a Species: the Jaguar as a Model , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[21]  R. Sikes,et al.  Guidelines of the American Society of Mammalogists for the Use of Wild Mammals in Research , 2007 .

[22]  J. Royston The W Test for Normality , 1982 .

[23]  Andrew E. Derocher,et al.  Space-use strategies of female polar bears in a dynamic sea ice habitat , 2001 .

[24]  L. Maiorano,et al.  Predicting potential distribution of the jaguar (Panthera onca) in Mexico: identification of priority areas for conservation , 2011 .

[25]  Lenore Fahrig,et al.  Non‐optimal animal movement in human‐altered landscapes , 2007 .

[26]  A. Rabinowitz,et al.  Ecology and behaviour of the Jaguar (Panthers onca) in Belize, Central America , 2009 .

[27]  R. Slotow,et al.  Impact of conservation interventions on the dynamics and persistence of a persecuted leopard (Panthera pardus) population , 2009 .

[28]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[29]  Marc Kery,et al.  Introduction to WinBUGS for Ecologists: Bayesian approach to regression, ANOVA, mixed models and related analyses , 2010 .

[30]  L. Silveira,et al.  Comparative analyses of semen and endocrine characteristics of free-living versus captive jaguars (Panthera onca). , 2001, Reproduction.

[31]  G. Schaller,et al.  Movement Patterns of Jaguar , 1980 .

[32]  Jean Paul Metzger,et al.  The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation , 2009 .

[33]  Kauê C. Abreu,et al.  As oncas-pintadas como detetives da paisagem no corredor do Alto Parana, Brasil , 2005 .

[34]  S. Hay,et al.  Mapping the Global Distribution of Livestock , 2014, PloS one.

[35]  G. Powell,et al.  Conservation Biology for the Biodiversity Crisis , 2002, Conservation biology : the journal of the Society for Conservation Biology.

[36]  Jan-Åke Nilsson,et al.  Patterns of Animal Migration , 2014 .

[37]  R. Reid,et al.  Variation in habitat selection by white-bearded wildebeest across different degrees of human disturbance , 2016 .

[38]  H. Akaike A new look at the statistical model identification , 1974 .

[39]  A. Paviolo,et al.  Understanding species persistence for defining conservation actions: A management landscape for jaguars in the Atlantic Forest , 2013 .

[40]  K. Crooks Relative Sensitivities of Mammalian Carnivores to Habitat Fragmentation , 2002 .

[41]  L. Silveira,et al.  Comparative Ecology of Jaguars in Brazil , 2008 .

[42]  M. Sandell The Mating Tactics and Spacing Patterns of Solitary Carnivores , 1989 .

[43]  Jon S Horne,et al.  Selecting the best home range model: an information-theoretic approach. , 2006, Ecology.

[44]  D. Conde,et al.  Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest , 2011 .

[45]  R. Powell,et al.  What is a home range? , 2012 .

[46]  Justin M. Calabrese,et al.  ctmm: an r package for analyzing animal relocation data as a continuous‐time stochastic process , 2016 .

[47]  Mark S. Boyce,et al.  Use of resource selection functions to identify conservation corridors , 2009 .

[48]  E. E. Ramalho,et al.  Avaliação do risco de extinção da onça-pintada Panthera onca (Linnaeus, 1758) no Brasil , 2013 .

[49]  M. D. Di Bitetti,et al.  Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest , 2011 .

[50]  Marcelo Tabarelli,et al.  Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil , 2005 .

[51]  D. Bates,et al.  Output Analysis and Diagnostics for MCMC , 2015 .

[52]  Howard B. Quigley,et al.  Jaguar spacing, activity and habitat use in a seasonally flooded environment in Brazil , 1991 .

[53]  Ran Nathan,et al.  An emerging movement ecology paradigm , 2008, Proceedings of the National Academy of Sciences.

[54]  Ricardo B. Machado,et al.  Estimativa de perda da área do Cerrado brasileiro , 2016 .

[55]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[56]  R. Morato,et al.  Modeling the risk of livestock depredation by jaguar along the Transamazon highway, Brazil , 2015 .

[57]  J. Hopcraft,et al.  Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. , 2006, Ecology.

[58]  Garrett M. Street,et al.  Wolves adapt territory size, not pack size to local habitat quality. , 2015, The Journal of animal ecology.

[59]  D. Murray,et al.  Spatial organization and food habits of jaguars (Panthera onca) in a floodplain forest , 2007 .

[60]  David W. Macdonald,et al.  The ecology of carnivore social behaviour , 1983, Nature.

[61]  Peter Jackson,et al.  Wild cats status survey and conservation action plan , 1996 .