Generalized SURE for optimal shrinkage of singular values in low-rank matrix denoising
暂无分享,去创建一个
[1] L. Pastur,et al. Matrices aléatoires: Statistique asymptotique des valeurs propres , 2003 .
[2] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[3] Gonzalo Mateos,et al. Inference of Poisson count processes using low-rank tensor data , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[4] Olivier Ledoit,et al. Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.
[5] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[6] H. Akaike. A new look at the statistical model identification , 1974 .
[7] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[8] Adrian S. Lewis,et al. Twice Differentiable Spectral Functions , 2001, SIAM J. Matrix Anal. Appl..
[9] Yonina C. Eldar. Generalized SURE for Exponential Families: Applications to Regularization , 2008, IEEE Transactions on Signal Processing.
[10] B. Efron. The Estimation of Prediction Error , 2004 .
[11] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[12] B. Efron,et al. Empirical Bayes on vector observations: An extension of Stein's method , 1972 .
[13] R. Tibshirani,et al. Selecting the number of principal components: estimation of the true rank of a noisy matrix , 2014, 1410.8260.
[14] Defeng Sun. Nonsmooth Matrix Valued Functions Defined by Singular Values , 2002 .
[15] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[16] T. Yanagimoto. The Kullback-Leibler risk of the Stein estimator and the conditional MLE , 1994 .
[17] Stephen P. Boyd,et al. Generalized Low Rank Models , 2014, Found. Trends Mach. Learn..
[18] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[19] Yang Cao,et al. Poisson Matrix Recovery and Completion , 2015, IEEE Transactions on Signal Processing.
[20] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[21] Michael E. Wall,et al. SVDMAN-singular value decomposition analysis of microarray data , 2001, Bioinform..
[22] Jiang Du,et al. Noise reduction in multiple-echo data sets using singular value decomposition. , 2006, Magnetic resonance imaging.
[23] J. Goodman. Some fundamental properties of speckle , 1976 .
[24] Charles-Alban Deledalle,et al. Estimation of Kullback-Leibler losses for noisy recovery problems within the exponential family , 2015, 1512.08191.
[25] David L. Donoho,et al. The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.
[26] Jean Lafond,et al. Low Rank Matrix Completion with Exponential Family Noise , 2015, COLT.
[27] A. Girard. A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data , 1989 .
[28] D. Botstein,et al. Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[29] Raj Rao Nadakuditi,et al. The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..
[30] Haipeng Shen,et al. Analysis of call centre arrival data using singular value decomposition , 2005 .
[31] David L. Donoho,et al. Optimal Shrinkage of Singular Values , 2014, IEEE Transactions on Information Theory.
[32] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[33] B. Efron,et al. Multivariate Empirical Bayes and Estimation of Covariance Matrices , 1976 .
[34] F. Ulaby,et al. Handbook of radar scattering statistics for terrain , 1989 .
[35] Raj Rao Nadakuditi,et al. OptShrink: An Algorithm for Improved Low-Rank Signal Matrix Denoising by Optimal, Data-Driven Singular Value Shrinkage , 2013, IEEE Transactions on Information Theory.
[36] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[37] H. Hudson. A Natural Identity for Exponential Families with Applications in Multiparameter Estimation , 1978 .
[38] L. Brown. Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .
[39] Norbert Schuff,et al. Denoising diffusion-weighted MR magnitude image sequences using low rank and edge constraints , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).
[40] Julie Josse,et al. Adaptive shrinkage of singular values , 2013, Statistics and Computing.
[41] D. Donoho,et al. Minimax risk of matrix denoising by singular value thresholding , 2013, 1304.2085.
[42] P. Hall. On Kullback-Leibler loss and density estimation , 1987 .
[43] Minh N. Do,et al. Spatiotemporal denoising of MR spectroscopic imaging data by low-rank approximations , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.
[44] Thierry Blu,et al. Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms , 2008, IEEE Transactions on Image Processing.
[45] Eero P. Simoncelli,et al. Learning to be Bayesian without Supervision , 2006, NIPS.
[46] Jan Hannig,et al. On Poisson signal estimation under Kullback-Leibler discrepancy and squared risk , 2006 .
[47] Emmanuel J. Candès,et al. Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators , 2012, IEEE Transactions on Signal Processing.
[48] Mohamed-Jalal Fadili,et al. Risk estimation for matrix recovery with spectral regularization , 2012, ICML 2012.
[49] Andrew B. Nobel,et al. Reconstruction of a low-rank matrix in the presence of Gaussian noise , 2010, J. Multivar. Anal..