Spatio-temporal patterns of schistosomiasis japonica in lake and marshland areas in China: the effect of snail habitats.

The progress of the integrated control policy for schistosomiasis implemented since 2005 in China, which is aiming at reducing the roles of bovines and humans as infection sources, may be challenged by persistent presence of infected snails in lake and marshland areas. Based on annual parasitologic data for schistosomiasis during 2004-2011 in Xingzi County, a spatio-temporal kriging model was used to investigate the spatio-temporal pattern of schistosomiasis risk. Results showed that environmental factors related to snail habitats can explain the spatio-temporal variation of schistosomiasis. Predictive maps of schistosomiasis risk illustrated that clusters of the disease fluctuated during 2004-2008; there was an extensive outbreak in 2008 and attenuated disease occurrences afterwards. An area with an annually constant cluster of schistosomiasis was identified. Our study suggests that targeting snail habitats located within high-risk areas for schistosomiasis would be an economic and sustainable way of schistosomiasis control in the future.

[1]  Spatio-temporal distribution of multiple cropping systems in the Poyang Lake region , 2008 .

[2]  D. Lin,et al.  The prevalence and control of schistosomiasis in Poyang Lake region, China. , 2004, Parasitology international.

[3]  P. Steinmann,et al.  Spatio-temporal analysis to identify determinants of Oncomelania hupensis infection with Schistosoma japonicum in Jiangsu province, China , 2013, Parasites & Vectors.

[4]  P J Diggle,et al.  Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty , 2007, Annals of tropical medicine and parasitology.

[5]  L Gosoniu,et al.  Bayesian modelling of geostatistical malaria risk data. , 2006, Geospatial health.

[6]  M. Ward,et al.  Long-Term Impact of the World Bank Loan Project for Schistosomiasis Control: A Comparison of the Spatial Distribution of Schistosomiasis Risk in China , 2012, PLoS neglected tropical diseases.

[7]  Wu Xiaohua,et al.  Schistosomiasis control in China: the impact of a 10-year World Bank Loan Project (1992-2001). , 2005, Bulletin of the World Health Organization.

[8]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[9]  Manfred M. Fischer,et al.  Spatial Data Analysis: Models, Methods and Techniques , 2011 .

[10]  J. Paireau,et al.  Analysing Spatio-Temporal Clustering of Meningococcal Meningitis Outbreaks in Niger Reveals Opportunities for Improved Disease Control , 2012, PLoS neglected tropical diseases.

[11]  J. Utzinger,et al.  Conquering schistosomiasis in China: the long march. , 2005, Acta tropica.

[12]  S. Mao,et al.  Schistosomiasis control in the people's Republic of China. , 1982, The American journal of tropical medicine and hygiene.

[13]  Donato Posa,et al.  Product‐sum covariance for space‐time modeling: an environmental application , 2001 .

[14]  R. Métras,et al.  Exploratory Space-Time Analyses of Rift Valley Fever in South Africa in 2008–2011 , 2012, PLoS neglected tropical diseases.

[15]  F. Doblas-Reyes,et al.  Retrospective prediction of the global warming slowdown in the past decade , 2013 .

[16]  Xiaonong Zhou,et al.  A strategy to control transmission of Schistosoma japonicum in China. , 2009, The New England journal of medicine.

[17]  Yue Chen,et al.  Spatial pattern of schistosomiasis in Xingzi, Jiangxi Province, China: the effects of environmental factors , 2013, Parasites & Vectors.

[18]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[19]  Jürg Utzinger,et al.  The public health significance and control of schistosomiasis in China--then and now. , 2005, Acta tropica.

[20]  Gerard B. M. Heuvelink,et al.  Soil water content interpolation using spatio-temporal kriging with external drift , 2003 .

[21]  S. D. de Vlas,et al.  Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. , 2007, Parasitology international.

[22]  M. Tanner,et al.  Sustainable schistosomiasis control—the way forward , 2003, The Lancet.

[23]  Yue Chen,et al.  Identifying high-risk regions for schistosomiasis in Guichi, China: a spatial analysis. , 2008, Acta tropica.

[24]  R. Baker,et al.  Identifying space-time disease clusters. , 2004, Acta tropica.

[25]  S. Brooker,et al.  Global epidemiology, ecology and control of soil-transmitted helminth infections. , 2006, Advances in parasitology.

[26]  Changhong Yang,et al.  Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China , 2007, Proceedings of the National Academy of Sciences.

[27]  Alfred Stein,et al.  Modelling, interpolation and stochastic simulation in space and time of global solar radiation. , 2000 .

[28]  Xiaonong Zhou,et al.  Schistosomiasis in China: acute infections during 2005-2008. , 2009, Chinese medical journal.

[29]  Gail M. Williams,et al.  Schistosomiasis in the People's Republic of China: the Era of the Three Gorges Dam , 2010, Clinical Microbiology Reviews.

[30]  M. Tanner,et al.  The 1992-1999 World Bank Schistosomiasis Research Initiative in China: outcome and perspectives. , 2000, Parasitology international.

[31]  Jinfeng Wang,et al.  Spatial Data Analysis , 2011 .

[32]  Phaedon C. Kyriakidis,et al.  Stochastic modeling of atmospheric pollution: a spatial time-series framework. Part I: methodology , 2001 .

[33]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[34]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .

[35]  U. Haque,et al.  Mapping malaria risk in Bangladesh using Bayesian geostatistical models. , 2010, The American journal of tropical medicine and hygiene.

[36]  Xiaoying Zheng,et al.  Geographical Detectors‐Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China , 2010, Int. J. Geogr. Inf. Sci..

[37]  G. Heuvelink,et al.  Spatio-Temporal Geostatistics using gstat , 2011 .

[38]  Penelope Vounatsou,et al.  Bayesian Spatio-Temporal Modeling of Schistosoma japonicum Prevalence Data in the Absence of a Diagnostic ‘Gold’ Standard , 2008, PLoS neglected tropical diseases.

[39]  S. Liang,et al.  Toward Sustainable and Comprehensive Control of Schistosomiasis in China: Lessons from Sichuan , 2011, PLoS neglected tropical diseases.

[40]  Marcel Tanner,et al.  Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. , 2006, The Lancet. Infectious diseases.

[41]  Long-de Wang [Management of human and animal feces is a key element for effective control of epidemic of endemic schistosomiasis in China]. , 2005, Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi.