Lithium niobateX-cut,Y-cut, andZ-cut surfaces fromab initiotheory

[1]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[2]  Alexander G. Carver,et al.  Challenges and potential payoff for crystalline oxides in wide bandgap semiconductor technology , 2003 .

[3]  W. Schmidt,et al.  GaN/LiNbO3 (0001) interface formation calculated from first-principles , 2010 .

[4]  Filipp Furche,et al.  Molecular tests of the random phase approximation to the exchange-correlation energy functional , 2001 .

[5]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[6]  M. Aono,et al.  Structure of Atomically Smoothed LiNbO3 (0001) Surface , 2004 .

[7]  A. Ougazzaden,et al.  GaN thin films on z‐ and x ‐cut LiNbO3 substrates by MOVPE , 2008 .

[8]  G. Lee Realization of ultrasmooth surface with atomic scale step structure on LiNbO3 and LiTaO3 substrates. , 2002, Optics express.

[9]  M. Vassalli,et al.  Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching , 2005 .

[10]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[11]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[12]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[13]  A. Rappe,et al.  Influence of ferroelectric polarization on the equilibrium stoichiometry of lithium niobate (0001) surfaces. , 2008, Physical review letters.

[14]  D. Jundt,et al.  III-nitride growth and characteristics on ferroelectric materials using plasma-assisted molecular beam epitaxy , 2006 .

[15]  Frank Fuchs,et al.  LiNbO3 ground- and excited-state properties from first-principles calculations , 2008 .

[16]  A. Gruverman,et al.  Polarization-dependent electron affinity of LiNbO3 surfaces , 2004 .

[17]  W Sohler,et al.  Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation. , 2009, Optics express.

[18]  H. Fujioka,et al.  GaN heteroepitaxial growth on LiNbO3(0001) step substrates with AlN buffer layers , 2005 .

[19]  B. M. Gatehouse,et al.  The crystal structure of the high temperature form of niobium pentoxide , 1964 .

[20]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[21]  Chadi,et al.  First-principles calculations of atomic and electronic structure of the GaAs(110) surface. , 1988, Physical review. B, Condensed matter.

[22]  Yousuke Nagasawa,et al.  The topmost structure of annealed single crystal of LiNbO3 , 1998 .

[23]  A. Naumovets,et al.  The impact of annealing and evaporation of crystals on their surface composition , 1999 .

[24]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[25]  V. Gopalan,et al.  Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations , 2008 .

[26]  K. Tabata,et al.  The effects of heat treatments upon NO adsorption for a single crystal of LiNbO3 , 1997 .

[27]  Chadi,et al.  Stoichiometry and surface reconstruction: An ab initio study of GaAs(100) surfaces. , 1988, Physical review letters.

[28]  (4×2) and (2×4) reconstructions of GaAs and InP(001) surfaces , 1997 .

[29]  T. Chong,et al.  Flux growth and morphology study of stoichiometric lithium niobate crystals , 2003 .

[30]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[31]  W. C. Martin,et al.  Energy levels of magnesium, Mg I through Mg XII , 1980 .

[32]  G. Namkoong,et al.  III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy , 2005 .

[33]  E. Altman,et al.  Geometric and electronic structure of positively and negatively poled LiNbO3 (0001) surfaces , 2007 .

[34]  E. Altman,et al.  Using ferroelectric poling to change adsorption on oxide surfaces. , 2007, Journal of the American Chemical Society.