In this study, electromagnetic scattering from inhomogeneous impedance periodic surfaces have been solved by means of transformation of problem into equivalent problem, that is, scattering from plane represented by transformed boundary condition. Transformed boundary condition is determined by functions of the shape and impedance of the surface. Then, transformed equivalent problem is solved by means of series expansion method using Floquet modes. This transformation makes the problem simple formulation and computational effectively without involving calculation of slowly converging periodic Green's function. Results and computational times obtained by transform method and those obtained by Method of Moment (MoM) technique are compared. Good agreements are observed in results. It is also observed that transform method needs much less computational time than MoM method.© 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 116–119, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23954
[1]
F. Schwering,et al.
Rigorous theory of scattering by perfectly conducting periodic surfaces with trapezoidal height profile, TE and TM polarization
,
1980
.
[2]
A. Neureuther,et al.
Scattering from a perfectly conducting surface with a sinusoidal height profile: TE polarization
,
1971
.
[3]
C. Eftimiu,et al.
Scattering of electromagnetic waves by conducting periodic surfaces: A comparison of exact integral equation methods
,
1987
.
[4]
J. Desanto.
Scattering from a perfectly reflecting arbitrary periodic surface: An exact theory
,
1981
.
[5]
R. Kress,et al.
Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape
,
2003
.
[6]
Edward J. Rothwell,et al.
Efficient computation of the two-dimensional periodic Green's function
,
1999
.