A Calculus of Circular Proofs and Its Categorical Semantics

We present a calculus of "circular proofs": the graph underlying a proof is not a finite tree but instead it is allowed to contain a certain amount of cycles. The main challenge in developing a theory for the calculus is to define the semantics of proofs, since the usual method by induction on the structure is not available. We solve this problem by associating to each proof a system of equations - defining relations among undetermined arrows of an arbitrary category with finite products and coproducts as well as constructible initial algebras and final coalgebras - and by proving that this system admits always a unique solution.

[1]  Zoltán Ésik,et al.  Iteration 2-theories , 2001, Appl. Categorical Struct..

[2]  Philip Wadler,et al.  Deforestation: Transforming Programs to Eliminate Trees , 1990, Theor. Comput. Sci..

[3]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[4]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[5]  André Joyal,et al.  Coherence Completions of Categories , 1999, Theor. Comput. Sci..

[6]  Andreas Blass,et al.  Degrees of indeterminacy of games , 1972 .

[7]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[8]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[9]  André Arnold,et al.  Rudiments of Mu-calculus , 2001 .

[10]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[11]  A. Joyal Free Lattices, Communication and Money Games , 1997 .

[12]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[13]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[14]  P. Freyd Algebraically complete categories , 1991 .

[15]  J. Girard,et al.  Proofs and types , 1989 .

[16]  R. Seely,et al.  Finite sum-product logic. , 2001 .

[17]  Thierry Coquand,et al.  Infinite Objects in Type Theory , 1994, TYPES.

[18]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[19]  R. A. G. Seely,et al.  Weakly distributive categories , 1997 .

[20]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[21]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[22]  Marina Lenisa A Complete Coinductive Logical System for Bisimulation Equivalence on Circular Objects , 1999, FoSSaCS.

[23]  Tarmo Uustalu,et al.  Mendler-Style Inductive Types, Categorically , 1999, Nord. J. Comput..

[24]  S. Lane Categories for the Working Mathematician , 1971 .

[25]  Luigi Santocanale,et al.  The Alternation Hierarchy for the Theory of mu-lattices , 2000 .

[26]  Yiannis N. Moschovakis,et al.  The Logic of Recursive Equations , 1998, J. Symb. Log..

[27]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[28]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[29]  A. Nerode,et al.  Concurrent Programs as Strategies in Games , 1992 .

[30]  Luigi Santocanale Free mu-lattices , 2000 .

[31]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[32]  Thierry Coquand,et al.  Inductively defined types , 1988, Conference on Computer Logic.

[33]  L. Santocanale,et al.  Free μ-lattices , 2000 .

[34]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[35]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..