A review of the osteoderms of lizards (Reptilia: Squamata)

Osteoderms are mineralised structures consisting mainly of calcium phosphate and collagen. They form directly within the skin, with or without physical contact with the skeleton. Osteoderms, in some form, may be primitive for tetrapods as a whole, and are found in representatives of most major living lineages including turtles, crocodilians, lizards, armadillos, and some frogs, as well as extinct taxa ranging from early tetrapods to dinosaurs. However, their distribution in time and space raises questions about their evolution and homology in individual groups. Among lizards and their relatives, osteoderms may be completely absent; present only on the head or dorsum; or present all over the body in one of several arrangements, including non‐overlapping mineralised clusters, a continuous covering of overlapping plates, or as spicular mineralisations that thicken with age. This diversity makes lizards an excellent focal group in which to study osteoderm structure, function, development and evolution. In the past, the focus of researchers was primarily on the histological structure and/or the gross anatomy of individual osteoderms in a limited sample of taxa. Those studies demonstrated that lizard osteoderms are sometimes two‐layered structures, with a vitreous, avascular layer just below the epidermis and a deeper internal layer with abundant collagen within the deep dermis. However, there is considerable variation on this model, in terms of the arrangement of collagen fibres, presence of extra tissues, and/or a cancellous bone core bordered by cortices. Moreover, there is a lack of consensus on the contribution, if any, of osteoblasts in osteoderm development, despite research describing patterns of resorption and replacement that would suggest both osteoclast and osteoblast involvement. Key to this is information on development, but our understanding of the genetic and skeletogenic processes involved in osteoderm development and patterning remains minimal. The most common proposition for the presence of osteoderms is that they provide a protective armour. However, the large morphological and distributional diversity in lizard osteoderms raises the possibility that they may have other roles such as biomechanical reinforcement in response to ecological or functional constraints. If lizard osteoderms are primarily for defence, whether against predators or conspecifics, then this ‘bony armour’ might be predicted to have different structural and/or mechanical properties compared to other hard tissues (generally intended for support and locomotion). The cellular and biomineralisation mechanisms by which osteoderms are formed could also be different from those of other hard tissues, as reflected in their material composition and nanostructure. Material properties, especially the combination of malleability and resistance to impact, are of interest to the biomimetics and bioinspired material communities in the development of protective clothing and body armour. Currently, the literature on osteoderms is patchy and is distributed across a wide range of journals. Herein we present a synthesis of current knowledge on lizard osteoderm evolution and distribution, micro‐ and macrostructure, development, and function, with a view to stimulating further work.

[1]  K. Mcbee,et al.  Dasypus novemcinctus , 2022, CABI Compendium.

[2]  Krister T. Smith,et al.  The anatomy, phylogenetic relationships, and autecology of the carnivorous lizard “Saniwa” feisti Stritzke, 1983 from the Eocene of Messel, Germany , 2021 .

[3]  D. Nonclercq,et al.  Morphological study of the integument and corporal skeletal muscles of two psammophilous members of Scincidae (Scincus scincus and Eumeces schneideri) , 2020, Journal of morphology.

[4]  F. Glaw,et al.  Armored with skin and bone: A combined histological and μCT‐study of the exceptional integument of the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) , 2020, Journal of morphology.

[5]  M. J. Hayes,et al.  The multiscale hierarchical structure of Heloderma suspectum osteoderms and their mechanical properties. , 2020, Acta biomaterialia.

[6]  A. Boyde,et al.  A comparative histological study of the osteoderms in the lizards Heloderma suspectum (Squamata: Helodermatidae) and Varanus komodoensis (Squamata: Varanidae) , 2020, Journal of anatomy.

[7]  F. Clarac,et al.  The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations , 2020, Philosophical Transactions of the Royal Society B.

[8]  Felipe G. Grazziotin,et al.  Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. , 2020, Systematic biology.

[9]  A. Bauer,et al.  The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko) , 2019, Journal of morphology.

[10]  A. Hosny,et al.  Bioinspired design of flexible armor based on chiton scales , 2019, Nature Communications.

[11]  Travis J. LaDuc,et al.  The Cephalic Osteoderms of Varanus komodoensis as Revealed by High-Resolution X-ray Computed Tomography. , 2019, Anatomical record.

[12]  S. Evans,et al.  A new Jurassic lizard from China , 2019, Geodiversitas.

[13]  F. Glaw,et al.  Armored with Skin and Bone: The Integumentary Morphology of the Antsingy Leaf Chameleon Brookesia perarmata (Iguania: Chamaeleonidae) , 2019 .

[14]  A. Bauer,et al.  Descriptive osteology and patterns of limb loss of the European limbless skink Ophiomorus punctatissimus (Squamata, Scincidae) , 2019, Journal of anatomy.

[15]  F. Clarac,et al.  The function(s) of bone ornamentation in the crocodylomorph osteoderms: a biomechanical model based on a finite element analysis , 2019, Paleobiology.

[16]  Emmanuel Paradis,et al.  ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R , 2018, Bioinform..

[17]  L. Eckhart,et al.  Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds. , 2018, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[18]  T. Scheyer,et al.  Novel data on aetosaur (Archosauria, Pseudosuchia) osteoderm microanatomy and histology: palaeobiological implications , 2018 .

[19]  T. Stankowich,et al.  On dangerous ground: the evolution of body armour in cordyline lizards , 2018, Proceedings of the Royal Society B: Biological Sciences.

[20]  C. Broeckhoven,et al.  Analyzing nature's protective design: The glyptodont body armor. , 2018, Journal of the mechanical behavior of biomedical materials.

[21]  C. Broeckhoven,et al.  Proximate causes of variation in dermal armour: insights from armadillo lizards , 2018, Oikos.

[22]  Y. Wang,et al.  The lizard genera Bainguis and Parmeosaurus from the Upper Cretaceous of China and Mongolia , 2018 .

[23]  A. Bauer,et al.  Developmental Osteology of the Parafrontal Bones of the Sphaerodactylidae , 2018, Anatomical record.

[24]  C. Hipsley,et al.  Comparative skull osteology and preliminary systematic revision of the African lizard genus Heliobolus (Squamata: Lacertidae) , 2018 .

[25]  B. Dubansky,et al.  Natural development of dermal ectopic bone in the american alligator (Alligator mississippiensis) resembles heterotopic ossification disorders in humans , 2018, Anatomical record.

[26]  E. A. Ossa,et al.  The limiting layer of fish scales: Structure and properties. , 2017, Acta biomaterialia.

[27]  C. Broeckhoven,et al.  X-ray microtomography in herpetological research: a review , 2018 .

[28]  H. Gregory McDonald An Overview of the Presence of Osteoderms in Sloths: Implications for Osteoderms as a Plesiomorphic Character of the Xenarthra , 2017, Journal of mammalian evolution.

[29]  Caleb M. Brown An exceptionally preserved armored dinosaur reveals the morphology and allometry of osteoderms and their horny epidermal coverings , 2017, PeerJ.

[30]  C. Broeckhoven,et al.  Sexual dimorphism in osteoderm expression and the role of male intrasexual aggression , 2017 .

[31]  Chris Broeckhoven,et al.  Functional trade-off between strength and thermal capacity of dermal armor: Insights from girdled lizards. , 2017, Journal of the mechanical behavior of biomedical materials.

[32]  F. Clarac,et al.  Do the ornamented osteoderms influence the heat conduction through the skin? A finite element analysis in Crocodylomorpha. , 2017, Journal of thermal biology.

[33]  A. Bauer,et al.  Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology , 2017, PloS one.

[34]  P. Jearanaisilawong,et al.  Mechanical properties and numerical simulation of Sulcata tortoise carapace. , 2017, Journal of the mechanical behavior of biomedical materials.

[35]  M. Moazen,et al.  Biomechanics of osteoderms in a lizard skull – a preliminary finite element study , 2017 .

[36]  Francois Barthelat,et al.  A comparative study of bio-inspired protective scales using 3D printing and mechanical testing. , 2017, Acta biomaterialia.

[37]  S. Evans,et al.  A new lizard (Reptilia: Squamata) from the Lower Cretaceous Yixian Formation of China, with a taxonomic revision of Yabeinosaurus , 2017 .

[38]  M. Vences,et al.  Off the scale: a new species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales , 2017, PeerJ.

[39]  J. Sanz,et al.  The internal anatomy of titanosaur osteoderms from the Upper Cretaceous of Spain is compatible with a role in oogenesis , 2017, Scientific Reports.

[40]  A. Bauer,et al.  Sheddable armour: identification of osteoderms in the integument of Geckolepis maculata (Gekkota) , 2017 .

[41]  C. Broeckhoven,et al.  Enemy at the gates: Rapid defensive trait diversification in an adaptive radiation of lizards , 2016, Evolution; international journal of organic evolution.

[42]  S. Gilbert,et al.  Development of the turtle plastron, the order-defining skeletal structure , 2016, Proceedings of the National Academy of Sciences.

[43]  M. Meyers,et al.  Structure and mechanical properties of selected protective systems in marine organisms. , 2016, Materials science & engineering. C, Materials for biological applications.

[44]  Otmar Kolednik,et al.  The mechanics of tessellations - bioinspired strategies for fracture resistance. , 2016, Chemical Society reviews.

[45]  M. Bates,et al.  A review of Cordylus machadoi (Squamata: Cordylidae) in southwestern Angola, with the description of a new species from the Pro-Namib desert. , 2016, Zootaxa.

[46]  G. Odierna,et al.  usefulness of postpygal caudal vertebrae and osteoderms for skeletochronology in the limbless lizard Anguis veronensis Pollini , 1818 ( Squamata : Sauria : anguidae ) , 2016 .

[47]  H. Schultze Scales, Enamel, Cosmine, Ganoine, and Early Osteichthyans , 2016 .

[48]  J. Horner,et al.  Mineralized tissues in dinosaurs interpreted as having formed through metaplasia: A preliminary evaluation , 2016 .

[49]  J. Wiens,et al.  Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. , 2016, Molecular phylogenetics and evolution.

[50]  R. Elsey,et al.  Alligator osteoderms as a source of labile calcium for eggshell formation , 2015 .

[51]  Wen Yang,et al.  Leatherback sea turtle shell: A tough and flexible biological design. , 2015, Acta biomaterialia.

[52]  I. Ineich,et al.  Body location and tail regeneration effects on osteoderms morphology—are they useful tools for systematic, paleontology, and skeletochronology in diploglossine lizards (squamata, anguidae)? , 2015, Journal of morphology.

[53]  M. Vickaryous,et al.  Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function , 2015, Journal of morphology.

[54]  M. Vickaryous,et al.  Armored geckos: A histological investigation of osteoderm development in Tarentola (Phyllodactylidae) and Gekko (Gekkonidae) with comments on their regeneration and inferred function , 2015, Journal of morphology.

[55]  Z. Gasparini,et al.  HISTOLOGY OF DERMAL OSSIFICATIONS IN AN ANKYLOSAURIAN DINOSAUR FROM THE LATE CRETACEOUS OF ANTARCTICA , 2015 .

[56]  C. Broeckhoven,et al.  What doesn't kill you might make you stronger: functional basis for variation in body armour. , 2015, The Journal of animal ecology.

[57]  M. Vences,et al.  Distinct Patterns of Desynchronized Limb Regression in Malagasy Scincine Lizards (Squamata, Scincidae) , 2015, PloS one.

[58]  Carlos Calderon,et al.  Characterization of dermal plates from armored catfish Pterygoplichthys pardalis reveals sandwich-like nanocomposite structure. , 2015, Journal of the mechanical behavior of biomedical materials.

[59]  E. Saitta Evidence for Sexual Dimorphism in the Plated Dinosaur Stegosaurus mjosi (Ornithischia, Stegosauria) from the Morrison Formation (Upper Jurassic) of Western USA , 2015, PloS one.

[60]  T. Scheyer,et al.  Osteoderm histology of Proterochampsia and Doswelliidae (Reptilia: Archosauriformes) and their evolutionary and paleobiological implications , 2015, Journal of morphology.

[61]  M. Boyce,et al.  Flexibility and protection by design: imbricated hybrid microstructures of bio-inspired armor. , 2015, Soft matter.

[62]  Nicholas G. Crawford,et al.  A phylogenomic analysis of turtles. , 2015, Molecular phylogenetics and evolution.

[63]  E. Jarvis,et al.  Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles , 2014, BMC Evolutionary Biology.

[64]  Mason R. Mackey,et al.  Protective role of Arapaima gigas fish scales: structure and mechanical behavior. , 2014, Acta biomaterialia.

[65]  Luke J. Harmon,et al.  Geiger V2.0: an Expanded Suite of Methods for Fitting Macroevolutionary Models to Phylogenetic Trees , 2014, Bioinform..

[66]  P. Currie,et al.  External and Internal Structure of Ankylosaur (Dinosauria, Ornithischia) Osteoderms and Their Systematic Relevance , 2014 .

[67]  Francois Barthelat,et al.  Fabrication, testing and modeling of a new flexible armor inspired from natural fish scales and osteoderms , 2014, Bioinspiration & biomimetics.

[68]  M. Carrano,et al.  Unusual Soft‐Tissue Preservation of a Crocodile Lizard (Squamata, Shinisauria) From the Green River Formation (Eocene) and Shinisaur Relationships , 2014, Anatomical record.

[69]  M. Meyers,et al.  Alligator osteoderms: mechanical behavior and hierarchical structure. , 2014, Materials science & engineering. C, Materials for biological applications.

[70]  T. Scheyer,et al.  Bone Histology of Phytosaur, Aetosaur, and Other Archosauriform Osteoderms (Eureptilia, Archosauromorpha) , 2014, Anatomical record.

[71]  Po-Yu Chen,et al.  Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms. , 2013, Acta biomaterialia.

[72]  C. Anderson,et al.  Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara) , 2013, BMC Evolutionary Biology.

[73]  B. Cogliati,et al.  Low temperatures reduce skin healing in the Jacaré do Pantanal (Caiman yacare, Daudin 1802) , 2013, Biology Open.

[74]  E. Stanley Systematics and morphological diversification of the Cordylidae (Squamata) , 2013 .

[75]  H. Nagashima,et al.  The endoskeletal origin of the turtle carapace , 2013, Nature Communications.

[76]  C. Schultz,et al.  Osteoderm microstructure of "rauisuchian" archosaurs from South America , 2013 .

[77]  C. Nüsslein-Volhard,et al.  Scales of fish arise from mesoderm , 2013, Current Biology.

[78]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[79]  H. Wagner,et al.  Micro-structure and mechanical properties of the turtle carapace as a biological composite shield. , 2013, Acta biomaterialia.

[80]  R. Cook,et al.  Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales. , 2013, Acta biomaterialia.

[81]  Wen Yang,et al.  Natural Flexible Dermal Armor , 2013, Advanced materials.

[82]  J. Losos,et al.  Who Speaks with a Forked Tongue? , 2012, Science.

[83]  R. Wootton,et al.  Calcium and salinity as selective factors in plate morph evolution of the three‐spined stickleback (Gasterosteus aculeatus) , 2012, Journal of evolutionary biology.

[84]  J. Kawasaki Origin and Evolution of Bone and Dentin and of Acidic Secretory Calcium-Binding Phosphoproteins , 2012 .

[85]  Daniel E. Warren,et al.  Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis , 2012, Proceedings of the Royal Society B: Biological Sciences.

[86]  M. Buchwitz,et al.  Osteoderm microstructure indicates the presence of a crocodylian-like trunk bracing system in a group of armoured basal tetrapods , 2012 .

[87]  S. Evans,et al.  A large predatory lizard (Platynota, Squamata) from the Late Cretaceous of South China , 2012 .

[88]  Wen Yang,et al.  Flexible Dermal Armor in Nature , 2012, JOM.

[89]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[90]  J. Mead,et al.  Helodermatid Lizard from the Mio-Pliocene Oak-Hickory Forest of Tennessee, Eastern USA, and a Review of Monstersaurian Osteoderms , 2012 .

[91]  R Damiens,et al.  Compressive behavior of a turtle's shell: experiment, modeling, and simulation. , 2012, Journal of the mechanical behavior of biomedical materials.

[92]  Wei Zhang,et al.  Microstructure and mechanical property of turtle shell , 2012 .

[93]  O. Rieppel,et al.  Osteology of Gobiderma pulchrum (Monstersauria, Lepidosauria, Reptilia) , 2011 .

[94]  Bhart‐Anjan S. Bhullar The Power and Utility Of Morphological Characters In Systematics: A Fully Resolved Phylogeny of Xenosaurus and Its Fossil Relatives (Squamata: Anguimorpha) , 2011 .

[95]  I. Cerda,et al.  Dermal armour histology of aetosaurs (Archosauria: Pseudosuchia), from the Upper Triassic of Argentina and Brazil , 2011 .

[96]  M. Vickaryous,et al.  Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar. , 2011, Nature communications.

[97]  G. Cherepanov The Origin of the Bony Shell of Turtles as a Unique Evolutionary Model in Reptiles , 2011 .

[98]  Gabriel Rivera,et al.  Finite element modeling of shell shape in the freshwater turtle Pseudemys concinna reveals a trade‐off between mechanical strength and hydrodynamic efficiency , 2011, Journal of morphology.

[99]  A. Keshri,et al.  Multi-scale hierarchy of Chelydra serpentina: microstructure and mechanical properties of turtle shell. , 2011, Journal of the mechanical behavior of biomedical materials.

[100]  F. Witzmann Morphological and histological changes of dermal scales during the fish‐to‐tetrapod transition , 2011 .

[101]  V. Buffrénil,et al.  An enamel-like tissue, osteodermine, on the osteoderms of a fossil anguid (Glyptosaurinae) lizard , 2011 .

[102]  Joanna McKittrick,et al.  Armadillo armor: mechanical testing and micro-structural evaluation. , 2011, Journal of the mechanical behavior of biomedical materials.

[103]  Juha Song,et al.  Threat-protection mechanics of an armored fish. , 2011, Journal of the mechanical behavior of biomedical materials.

[104]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Dasypus novemcinctus shell , 2011 .

[105]  S. Evans,et al.  NEW MATERIAL OF THE ENIGMATIC SCANDENSIA, AN EARLY CRETACEOUS LIZARD FROM THE IBERIAN PENINSULA , 2011 .

[106]  R. Hill,et al.  Osteoderms of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar , 2010 .

[107]  G. Tattersall,et al.  Internal vascularity of the dermal plates of Stegosaurus (Ornithischia, Thyreophora) , 2010 .

[108]  V. Buffrénil,et al.  The histological structure of glyptosaurine osteoderms (Squamata: Anguidae), and the problem of osteoderm development in squamates , 2010, Journal of morphology.

[109]  N. Giles The possible role of environmental calcum levels during the evolution of phenotypic diversity in Outer Hebridean populations of the Three-spined stickleback, Gasterosteus aculeatus , 2010 .

[110]  D. Costantini,et al.  Sex-specific predation on two lizard species by kestrels , 2010, Russian journal of ecology.

[111]  T. Scheyer,et al.  Function and Evolution of Ankylosaur Dermal Armor , 2010 .

[112]  F. Witzmann,et al.  The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella , 2010 .

[113]  M. Horstemeyer,et al.  A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites , 2009 .

[114]  O. Rieppel The skull and the jaw adductor musculature in some burrowing scincomorph lizards of the genera Acontias, Typhlosaurus and Feylinia , 2009 .

[115]  T. Scheyer,et al.  Skeletochronology and isotopic analysis of a captive individual of Alligator mississippiensis Daudin, 1802 , 2009 .

[116]  T. Scheyer,et al.  Bone microstructures and mode of skeletogenesis in osteoderms of three pareiasaur taxa from the Permian of South Africa , 2009, Journal of evolutionary biology.

[117]  M. Vickaryous,et al.  Origin and evolution of the integumentary skeleton in non‐tetrapod vertebrates , 2009, Journal of anatomy.

[118]  M. Vickaryous,et al.  The integumentary skeleton of tetrapods: origin, evolution, and development , 2009, Journal of anatomy.

[119]  S. Chatterjee,et al.  The Titanosaur (Dinosauria: Sauropoda) Osteoderm Record: Review and First Definitive Specimen from India , 2009 .

[120]  J. Postlethwait,et al.  Evolutionary mutant models for human disease. , 2009, Trends in genetics : TIG.

[121]  F. Witzmann Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis , 2009 .

[122]  C. Bell,et al.  Osteoderms of the California Legless Lizard Anniella (Squamata: Anguidae) and Their Relevance for Considerations of Miniaturization , 2008, Copeia.

[123]  B. Hall,et al.  Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms , 2008, Journal of morphology.

[124]  J. Cisneros Phylogenetic relationships of procolophonid parareptiles with remarks on their geological record , 2008 .

[125]  D. Jackson,et al.  Lactate metabolism in anoxic turtles: an integrative review , 2008, Journal of Comparative Physiology B.

[126]  T. Scheyer Skeletal histology of the dermal armor of Placodontia: the occurrence of ‘postcranial fibro‐cartilaginous bone’ and its developmental implications , 2007, Journal of anatomy.

[127]  J. Botha-Brink,et al.  A mixed-age classed ‘pelycosaur’ aggregation from South Africa: earliest evidence of parental care in amniotes? , 2007, Proceedings of the Royal Society B: Biological Sciences.

[128]  T. Marinho Functional aspects of titanosaur osteoderms , 2007 .

[129]  H. Nance Cranial osteology of the African gerrhosaurid Angolosaurus skoogi (Squamata; Gerrhosauridae) , 2007 .

[130]  S. Gilbert,et al.  Evidence that a late‐emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta , 2007, Evolution & development.

[131]  S. Carranza,et al.  Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera , 2007 .

[132]  R. Hill,et al.  Comparative anatomy and histology of xenarthran osteoderms , 2006, Journal of morphology.

[133]  B. Hall,et al.  Osteoderm morphology and development in the nine‐banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata) , 2006, Journal of morphology.

[134]  S. Gilbert,et al.  How the turtle forms its shell: a paracrine hypothesis of carapace formation. , 2005, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[135]  J. Maisano,et al.  The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae) , 2005 .

[136]  R. Hill,et al.  Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. , 2005, Systematic biology.

[137]  R. Main,et al.  The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs , 2005, Paleobiology.

[138]  P. M. Sander,et al.  HISTOLOGY OF ANKYLOSAUR OSTEODERMS: IMPLICATIONS FOR SYSTEMATICS AND FUNCTION , 2004 .

[139]  K. Weiss,et al.  Genetic basis for the evolution of vertebrate mineralized tissue. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[140]  V. Buffrénil,et al.  VERMIFORM BONES AND THE EVOLUTION OF GIGANTISM IN MEGALANIA—HOW A REPTILIAN FOX BECAME A LION , 2003 .

[141]  K. Gao,et al.  FIRST DEFINITIVE RECORD OF MESOZOIC LIZARDS FROM MADAGASCAR , 2003 .

[142]  D. Jackson,et al.  Lactate sequestration by osteoderms of the broad-nose caiman, Caiman latirostris, following capture and forced submergence , 2003, Journal of Experimental Biology.

[143]  J. Gauthier,et al.  The Osteoderms and Palpebral in Lanthanotus borneensis (Squamata: Anguimorpha) , 2002 .

[144]  J. Losos,et al.  The effect of body armature on escape behaviour in cordylid lizards , 2002, Animal Behaviour.

[145]  P. Barrett,et al.  Morphology, histology and identification of the ‘granicones’ from the Purbeck Limestone Formation (Lower Cretaceous: Berriasian) of Dorset, southern England , 2002 .

[146]  E. Frey,et al.  A biomechanical transformation model for the evolution of semi-spheroidal articulations between adjoining vertebral bodies in crocodilians , 2001 .

[147]  M. Borsuk-Białynicka,et al.  A lizard from Baltic amber [Eocene] and the ancestry of the crown group lacertids , 1999 .

[148]  D. Krause,et al.  Titanosaurid (Sauropoda) osteoderms from the Late Cretaceous of Madagascar , 1998 .

[149]  R. Reisz,et al.  Anatomy and relationships of Elliotsmithia longiceps Broom, a small synapsid (Eupelycosauria: Varanopseidae) from the late Permian of South Africa , 1998 .

[150]  F. Barahona,et al.  Inter‐ and intraspecific variation in the post‐natal skull of some lacertid lizards , 1998 .

[151]  S. Evans,et al.  Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah , 1998 .

[152]  V. Reynoso A “beaded” sphenodontian (Diapsida: Lepidosauria) from the Early Cretaceous of central Mexico , 1997 .

[153]  A. Tucker Validation of skeletochronology to determine age of freshwater crocodiles (Crocodylus johnstoni) , 1997 .

[154]  Uetz Peter,et al.  The Reptile Database , 1995 .

[155]  J. Sire Development and fine structure of the bony scutes in Corydoras arcuatus (Siluriformes, callichthyidae) , 1993, Journal of morphology.

[156]  A. Bauer,et al.  Skin mechanics and morphology in Sphaerodactylus roosevelti (Reptilia: Gekkonidae) , 1992 .

[157]  M. Wake,et al.  Structure of the scales of Dermophis and Microcaecilia (Amphibia: Gymnophiona), and a comparison to dermal ossifications of other vertebrates , 1990, Journal of morphology.

[158]  B. Hall,et al.  DEVELOPMENT AND EVOLUTIONARY ORIGINS OF VERTEBRATE SKELETOGENIC AND ODONTOGENIC TISSUES , 1990, Biological reviews of the Cambridge Philosophical Society.

[159]  P. Hansma,et al.  Atomic force microscopy , 1990, Nature.

[160]  R. Shadwick,et al.  Mechanical Properties and Morphological Correlates of Fragile Skin in Gekkonid Lizards , 1989 .

[161]  A. Bauer,et al.  Supraorbital ossifications in geckos (Reptilia: Gekkonidae) , 1989 .

[162]  E. N. Arnold Towards a phylogeny and biogeography of the Lacertidae: relationships within an Old-World family of lizards derived from morphology , 1989 .

[163]  K. Queiroz**,et al.  Phylogenetic relationships within squamata , 1988 .

[164]  K. Queiroz**,et al.  Phylogenetic systematics of iguanine lizards: a comparative osteological study , 1987 .

[165]  J. Farlow,et al.  Growth and function of Stegosaurus plates: evidence from bone histology , 1986, Paleobiology.

[166]  L. Zylberberg,et al.  The structure of the osteoderms in the Gekko: Tarentola mauritanica. , 1986, The American journal of anatomy.

[167]  V. Levrat-Calviac Etude comparée des ostéodermes de Tarentola mauritanica et de T. neglecta (Gekkonidae, Squamata) , 1986 .

[168]  J. Castanet,et al.  New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata) , 1985, Journal of morphology.

[169]  K. Schwenk,et al.  A New Species of Abronia (Lacertilia: Anguidae) from Oaxaca, Mexico , 1985 .

[170]  W. Reif Evolution of Dermal Skeleton and Dentition in Vertebrates , 1982 .

[171]  T. Graber Chondroid bone, secondary cartilage and metaplasia , 1981 .

[172]  J. Castanet,et al.  Structure of the dermal scales in gymnophiona (Amphibia) , 1980, Journal of morphology.

[173]  M. R. Seidel THE OSTEODERMS OF THE AMERICAN ALLIGATOR AND THEIR FUNCTIONAL SIGNIFICANCE , 1979 .

[174]  A. Schwartz,et al.  Osteoderms in the Anguid Lizard Subfamily Diploglossinae and Their Taxonomic Importance , 1977 .

[175]  M. Moss The Vertebrate Dermis and the Integumental Skeleton , 1972 .

[176]  M. Moss Comparative histology of dermal sclerifications in reptiles. , 1969, Acta anatomica.

[177]  R. Haines,et al.  Metaplastic bone. , 1968, Journal of anatomy.

[178]  S. Bryant,et al.  Tail regeneration in the lizards Anguis fragilis and Lacerta dugesii , 1967 .

[179]  F. Khalil,et al.  TISSUE CONSTITUENTS OF REPTILES IN RELATION TO THEIR MODE OF LIFE. III. NITROGEN CONTENT AND SERUM PROTEINS. , 1963, Comparative biochemistry and physiology.

[180]  F. Khalil,et al.  Tissue constituents of retiles in relation to their mode of life--I. Water content. , 1962, Comparative Biochemistry and Physiology A.

[181]  A. Grobman The Systematic Position of Lanthanotus and the Affinities of the Anguinomorphan Lizards.Samuel Booker McDowell, Jr. , Charles M. Bogert , 1955 .

[182]  J. A. Oliver Ontogenetic Changes in Osteodermal Ornamentation in Skinks , 1951 .

[183]  H. Otto Die Beschuppung der Brevilinguier und Ascalaboten , 1908 .

[184]  S. Garman On Chelydra serpentina. , 1893, Science.