Sodium–oxygen batteries: a new class of metal–air batteries

Research on sodium–oxygen batteries has gained unprecedented momentum in recent times. With a high theoretical specific energy of 1600 W h kg−1 and an equilibrium discharge potential of 2.3 V, a rechargeable sodium–oxygen battery embodies an attractive new metal–air battery platform for applications in transportation. As an earth-abundant element, sodium has the potential to be a low cost replacement for lithium in electrochemical storage technologies while retaining the majority of its qualities. This highlight focuses on the development and current progress in the field of sodium–oxygen batteries. Strategies for improving the reversibility of the electrode reactions and for understanding and overcoming key problems in sodium–oxygen batteries are also discussed.

[1]  Steve W. Martin,et al.  Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying , 2013 .

[2]  Y. Long,et al.  CORRIGENDUM: Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing , 2013, Scientific Reports.

[3]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[4]  S. Narayanan,et al.  Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage , 2012 .

[5]  Doron Aurbach,et al.  Mg rechargeable batteries: an on-going challenge , 2013 .

[6]  Samanvaya Srivastava,et al.  High energy lithium–oxygen batteries – transport barriers and thermodynamics , 2012 .

[7]  J. Janek,et al.  Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells , 2014 .

[8]  Shyue Ping Ong,et al.  Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries. , 2014, Nano letters.

[9]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[10]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[11]  J. Long,et al.  Metal–organic frameworks as solid magnesium electrolytes , 2014 .

[12]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[13]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[14]  Liangbing Hu,et al.  Atomic-layer-deposition oxide nanoglue for sodium ion batteries. , 2014, Nano letters.

[15]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[16]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[17]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[18]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[19]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[20]  Hee-Dae Lim,et al.  Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[22]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[23]  Jun Chen,et al.  Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/air Batteries , 2007 .

[24]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[25]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[26]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[27]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[28]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[29]  L. Stievano,et al.  Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries , 2013 .

[30]  K. Kang,et al.  First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries , 2014 .

[31]  Fuminori Mizuno,et al.  A high energy-density tin anode for rechargeable magnesium-ion batteries. , 2013, Chemical communications.

[32]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[33]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[34]  Donald J. Siegel,et al.  Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries , 2013 .

[35]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[36]  E. Peled,et al.  Challenges and obstacles in the development of sodium–air batteries , 2013 .

[37]  Jun Chen,et al.  Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications. , 2006, Angewandte Chemie.

[38]  Jun Chen,et al.  Magnesium–air batteries: from principle to application , 2014 .

[39]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[40]  Jean-Marie Tarascon,et al.  Sodium intercalation into the layer oxides NaxMo2O4 , 1986 .

[41]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[42]  Qian Sun,et al.  An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. , 2013, Chemical communications.

[43]  Haoshen Zhou,et al.  High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .

[44]  Huanlei Wang,et al.  Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. , 2013, ACS nano.

[45]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[46]  Prabal Sapkota,et al.  Zinc–air fuel cell, a potential candidate for alternative energy , 2009 .

[47]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[48]  Lynden A. Archer,et al.  Carbon dioxide assist for non-aqueous sodium-oxygen batteries , 2013 .

[49]  T. Shiga,et al.  Quantitation of Li2O2 stored in Li-O2 batteries based on its reaction with an oxoammonium salt. , 2013, Chemical communications.

[50]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[51]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[52]  Jingling Ma,et al.  Performance of Al–0.5 Mg–0.02 Ga–0.1 Sn–0.5 Mn as anode for Al–air battery in NaCl solutions , 2014 .

[53]  W. L. Worrell,et al.  A thermodynamic study of sodium-intercalated TaS2 and TiS2 , 1979 .

[54]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[55]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[56]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[57]  Yang Shao-Horn,et al.  In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. , 2013, Nano letters.

[58]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[59]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[60]  Li Wang,et al.  Corrigendum: Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference , 2013, Nature Communications.

[61]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[62]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[63]  Xueliang Sun,et al.  Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. , 2013, Chemical communications.

[64]  T. Jow,et al.  The Role of Conductive Polymers in Alkali‐Metal Secondary Electrodes , 1987 .