Hidden Attractors and Dynamics of a General Autonomous van der Pol-Duffing Oscillator

In this paper, a general autonomous van der Pol–Duffing oscillator is studied. Several issues, such as periodic bifurcations and the dynamical structures of the system are investigated either analytically or numerically. Especially, a phenomenon of hidden attractors is noticed and an algorithm for the location of hidden attractors is given. The obtained results show that hidden attractors exist around chaotic attractors.

[1]  Qigui Yang,et al.  Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci , 2010, Appl. Math. Comput..

[2]  Nikolay V. Kuznetsov,et al.  Algorithm for localizing Chua attractors based on the harmonic linearization method , 2010 .

[3]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[4]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[6]  Xiaofeng Liao,et al.  Hopf bifurcation and chaos analysis of Chen’s system with distributed delays , 2005 .

[7]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[8]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[9]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[10]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[11]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[12]  Wei Feng,et al.  Bifurcation and chaos in neural excitable system , 2006 .

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[15]  Zhujun Jing,et al.  Bifurcation and chaos in discrete-time predator–prey system , 2006 .

[16]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[17]  Nikolay V. Kuznetsov,et al.  Analytical-numerical method for attractor localization of generalized Chua's system , 2010, PSYCO.

[18]  Alberto Tesi,et al.  Robust Absolute Stability of Lur'e Control Systems in Parameter Space , 1990 .

[19]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[20]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[21]  Qigui Yang,et al.  Dynamical analysis of the generalized Sprott C system with only two stable equilibria , 2012 .

[22]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[23]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[24]  E. O. Ochola,et al.  A hyperchaotic system without equilibrium , 2012 .

[25]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .

[26]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[27]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[28]  Nikolay V. Kuznetsov,et al.  Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems , 2011 .

[29]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[30]  H. Agiza,et al.  Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor , 2008 .