Highly efficient, spectrally pure 340 nm ultraviolet emission from AlxGa1−xN nanowire based light emitting diodes

High crystal quality, vertically aligned AlxGa1-xN nanowire based double heterojunction light emitting diodes (LEDs) are grown on Si substrate by molecular beam epitaxy. Such AlxGa1-xN nanowires exhibit unique core-shell structures, which can significantly suppress surface nonradiative recombination. We successfully demonstrate highly efficient AlxGa1-xN nanowire array based LEDs operating at ∼340 nm. Such nanowire devices exhibit superior electrical and optical performance, including an internal quantum efficiency of ∼59% at room temperature, a relatively small series resistance, highly stable emission characteristics, and the absence of efficiency droop under pulsed biasing conditions.

[1]  K. H. Kim,et al.  III-nitride ultraviolet light-emitting diodes with delta doping , 2003 .

[2]  L. Dai,et al.  Single ZnO Nanowire/p‐type GaN Heterojunctions for Photovoltaic Devices and UV Light‐Emitting Diodes , 2010, Advanced materials.

[3]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[4]  Yoon-Kyu Song,et al.  290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles. , 2005, Optics express.

[5]  S. Reitzenstein,et al.  Direct comparison of catalyst-free and catalyst-induced GaN nanowires , 2010 .

[6]  Yoon-Kyu Song,et al.  Ultraviolet light-emitting diodes operating in the 340nm wavelength range and application to time-resolved fluorescence spectroscopy , 2004 .

[7]  Michael R. Krames,et al.  Vertical injection thin-film AlGaN∕AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes , 2006 .

[8]  Vinod Adivarahan,et al.  AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission , 2003 .

[9]  Hong Guo,et al.  Tuning the surface charge properties of epitaxial InN nanowires. , 2012, Nano letters.

[10]  Yoon-Kyu Song,et al.  High Performance AlGaInN Ultraviolet Light-Emitting Diode at the 340 nm Wavelength , 2004 .

[11]  A. Usikov,et al.  341 nm emission from hydride vapor-phase epitaxy ultraviolet light-emitting diodes , 2004 .

[12]  G A Botton,et al.  p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). , 2011, Nano letters.

[13]  Jong Kyu Kim,et al.  Recombination dynamics in ultraviolet light-emitting diodes with Si-doped AlxGa1−xN∕AlyGa1−yN multiple quantum well active regions , 2007 .

[14]  T. Ben,et al.  Imaging and Analysis by Transmission Electron Microscopy of the Spontaneous Formation of Al-Rich Shell Structure in AlxGa1-xN/GaN Nanowires , 2012 .

[15]  Debdeep Jena,et al.  Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures , 2010, Science.

[16]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[17]  B. Joyce,et al.  REFLECTION HIGH-ENERGY ELECTRON DIFFRACTION INTENSITY OSCILLATIONS AND ANISOTROPY ON VICINAL ALAS(001) DURING MOLECULAR-BEAM EPITAXY , 1993 .

[18]  K. Kandler,et al.  Enhancement of NMDA receptor‐mediated currents by light in rat neurones in vitro , 2000, The Journal of physiology.

[19]  Tao Wang,et al.  Characterization of InGaN-based nanorod light emitting diodes with different indium compositions , 2012 .

[20]  Greg Miller,et al.  Shining New Light on Neural Circuits , 2006, Science.

[21]  Manijeh Razeghi,et al.  Characteristics of high-quality p-type AlxGa1−xN/GaN superlattices , 2002 .

[22]  Zhong Lin Wang,et al.  Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. , 2010, Nano letters.

[23]  E. Monroy,et al.  Identification of III–N nanowire growth kinetics via a marker technique , 2010, Nanotechnology.

[24]  Z. Mi,et al.  Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. , 2012, Nano letters.

[25]  S. Hsu,et al.  Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. , 2010, The journal of physical chemistry. B.

[26]  F. Shahedipour-Sandvik,et al.  Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN , 2009 .

[27]  D. S. Weiss,et al.  Positive allosteric modulation by ultraviolet irradiation on GABAA, but not GABAC, receptors expressed in Xenopus oocytes , 2001, The Journal of physiology.

[28]  Hao-Chung Kuo,et al.  Elucidating the Physical Property of the InGaN Nanorod Light-Emitting Diode: Large Tunneling Effect , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Makoto Miyoshi,et al.  Suppression of the subband parasitic peak by 1nm i-AlN interlayer in AlGaN deep ultraviolet light-emitting diodes , 2008 .

[30]  Kai Cui,et al.  High efficiency ultraviolet emission from AlxGa1−xN core-shell nanowire heterostructures grown on Si (111) by molecular beam epitaxy , 2012 .

[31]  Siddharth Rajan,et al.  Low resistance GaN/InGaN/GaN tunnel junctions , 2012, 1211.4905.

[32]  S. K. Jha,et al.  ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis , 2012 .

[33]  K. H. Kim,et al.  III-nitride blue and ultraviolet photonic crystal light emitting diodes , 2004 .

[34]  Xiao-mei Zhang,et al.  Fabrication of a High‐Brightness Blue‐Light‐Emitting Diode Using a ZnO‐Nanowire Array Grown on p‐GaN Thin Film , 2009 .

[35]  Robert F. Davis,et al.  Origins of Parasitic Emissions from 353 nm AlGaN-based Ultraviolet Light Emitting Diodes over SiC Substrates , 2006 .

[36]  Martin Kuball,et al.  Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm , 2002 .

[37]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[38]  Avraham Mayevsky,et al.  Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. , 2007 .

[39]  S. Rothman,et al.  Optical suppression of seizure-like activity with an LED , 2007, Epilepsy Research.

[40]  B. Connors,et al.  Semiconductor ultra-violet light-emitting diodes for flash photolysis , 2007, Journal of Neuroscience Methods.

[41]  M. Reed,et al.  Device self‐heating effects in deep UV LEDs studied by systematic variation in pulsed current injection , 2008 .

[42]  A. G. Cullis,et al.  Greatly improved performance of 340nm light emitting diodes using a very thin GaN interlayer on a high temperature AlN buffer layer , 2006 .

[43]  Hong Wang,et al.  Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers , 2012 .