Graphs that are Critical for the Packing Chromatic Number

Given a graph $G$, a coloring $c:V(G)\longrightarrow \{1,\ldots,k\}$ such that $c(u)=c(v)=i$ implies that vertices $u$ and $v$ are at distance greater than $i$, is called a packing coloring of $G$. The minimum number of colors in a packing coloring of $G$ is called the packing chromatic number of $G$, and is denoted by $\chi_\rho(G)$. In this paper, we propose the study of $\chi_\rho$-critical graphs, which are the graphs $G$ such that for any proper subgraph $H$ of $G$, $\chi_\rho(H)<\chi_\rho(G)$. We characterize $\chi_\rho$-critical graphs with diameter 2, and $\chi_\rho$-critical block graphs with diameter 3. Furthermore, we characterize $\chi_\rho$-critical graphs with small packing chromatic numbers, and we also consider $\chi_\rho$-critical trees. In addition, we prove that for any graph $G$ with $e\in E(G)$, we have $(\chi_\rho(G)+1)/2\le \chi_\rho(G-e)\le \chi_\rho(G)$, and provide a corresponding realization result, which shows that $\chi_\rho(G-e)$ can achieve any of the integers between the bounds.

[1]  Tomás Masarík,et al.  Notes on complexity of packing coloring , 2017, Inf. Process. Lett..

[2]  Sandi Klavzar,et al.  Packing chromatic number under local changes in a graph , 2017, Discret. Math..

[3]  Sandi Klavzar,et al.  Packing chromatic vertex-critical graphs , 2019, Discret. Math. Theor. Comput. Sci..

[4]  Alexandr V. Kostochka,et al.  Packing Chromatic Number of Subdivisions of Cubic Graphs , 2019, Graphs Comb..

[5]  Boštjan Brešar,et al.  Packing coloring of Sierpiński-type graphs , 2018, Aequationes mathematicae.

[6]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[7]  Olivier Togni On packing colorings of distance graphs , 2014, Discret. Appl. Math..

[8]  Bostjan Bresar,et al.  An infinite family of subcubic graphs with unbounded packing chromatic number , 2018, Discret. Math..

[9]  Barnaby Martin,et al.  The packing chromatic number of the infinite square lattice is between 13 and 15 , 2017, Discret. Appl. Math..

[10]  Éric Sopena,et al.  Packing Coloring of Some Undirected and Oriented Coronae Graphs , 2017, Discuss. Math. Graph Theory.

[11]  D. West Introduction to Graph Theory , 1995 .

[12]  Olivier Togni,et al.  The packing coloring of distance graphs D(k, t) , 2014, Discret. Appl. Math..

[13]  Sandi Klavžar,et al.  Packing chromatic number versus chromatic and clique number , 2017, 1707.04910.

[14]  Olivier Togni,et al.  On packing chromatic number of subcubic outerplanar graphs , 2019, Discret. Appl. Math..

[15]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[16]  Danilo Korze,et al.  (d, N)-packing Colorings of Infinite Lattices , 2018, Discret. Appl. Math..

[17]  Mario Valencia-Pabon,et al.  The packing chromatic number of hypercubes , 2015, Discret. Appl. Math..

[18]  Aleksander Vesel,et al.  Modeling the packing coloring problem of graphs , 2015 .

[19]  Alexandr Kostochka,et al.  Packing chromatic number of subcubic graphs , 2017 .

[20]  Danilo Korze,et al.  Packing coloring of generalized Sierpinski graphs , 2019, Discret. Math. Theor. Comput. Sci..

[21]  Jirí Fiala,et al.  Complexity of the Packing Coloring Problem for Trees , 2008, WG.

[22]  Éric Sopena,et al.  Packing colouring of some classes of cubic graphs , 2018, ArXiv.

[23]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[24]  Alexandr V. Kostochka,et al.  Packing chromatic number of cubic graphs , 2018, Discret. Math..