Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

Recognizing the imperative need for biodiversity protection, the convention on biological diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities.

[1]  Martin Herold,et al.  On the Suitability of MODIS Time Series Metrics to Map Vegetation Types in Dry Savanna Ecosystems: A Case Study in the Kalahari of NE Namibia , 2009, Remote. Sens..

[2]  Congcong Li,et al.  Forest Canopy Height Extraction in Rugged Areas With ICESat/GLAS Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[3]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[4]  G. Daily,et al.  Biodiversity loss and its impact on humanity , 2012, Nature.

[5]  Suha Berberoglu,et al.  Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[6]  Brett J. Goodwin,et al.  Is landscape connectivity a dependent or independent variable? , 2003, Landscape Ecology.

[7]  William A. Cornforth,et al.  Advanced Land Observing Satellite Phased Array Type L-Band SAR (ALOS PALSAR) to Inform the Conservation of Mangroves: Sundarbans as a Case Study , 2013, Remote. Sens..

[8]  Eren Turak,et al.  Building a global observing system for biodiversity , 2012 .

[9]  Dar A. Roberts,et al.  Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier , 2012, Remote. Sens..

[10]  S. Silvestri,et al.  Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing , 2006 .

[11]  Andrew K. Skidmore,et al.  Earth observation for biodiversity monitoring : a review of current approaches and future opportunities for tracking progress towards the Aichi Biodiversity Targets : e-book , 2014 .

[12]  Jean-Pierre Wigneron,et al.  Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series , 2011 .

[13]  C. Margules,et al.  Indicators of Biodiversity for Ecologically Sustainable Forest Management , 2000 .

[14]  Juha Hyyppä,et al.  Advances in Forest Inventory Using Airborne Laser Scanning , 2012, Remote. Sens..

[15]  I. C. van Duren,et al.  Remote sensing and GIS applications for mapping and spatial modelling of invasive species , 2004 .

[16]  P. Frazier,et al.  High-Resolution Remote Sensing of Upland Swamp Boundaries and Vegetation for Baseline Mapping and Monitoring , 2010, Wetlands.

[17]  Vassiliki Kati,et al.  Testing the Value of Six Taxonomic Groups as Biodiversity Indicators at a Local Scale , 2004 .

[18]  Norbert Pfeifer,et al.  Forest Delineation Based on Airborne LIDAR Data , 2012, Remote. Sens..

[19]  Florian Siegert,et al.  Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[20]  Volker C. Radeloff,et al.  Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing , 2010 .

[21]  N. Pfeifer,et al.  Water surface mapping from airborne laser scanning using signal intensity and elevation data , 2009 .

[22]  Uwe Soergel,et al.  Aspects of generating precise digital terrain models in the Wadden Sea from lidar–water classification and structure line extraction , 2008 .

[23]  Lee A. Vierling,et al.  The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest , 2008 .

[24]  C. Patnaik,et al.  Discrimination of mangrove forests and characterization of adjoining land cover classes using temporal C-band Synthetic Aperture Radar data: A case study of Sundarbans , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[25]  Maycira Costa,et al.  Using ALOS/PALSAR and RADARSAT-2 to Map Land Cover and Seasonal Inundation in the Brazilian Pantanal , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[26]  Chuanmin Hu,et al.  Remote sensing of water clarity in Tampa Bay , 2007 .

[27]  Konstantinos Topouzelis,et al.  Oil spill feature selection and classification using decision tree forest on SAR image data , 2012 .

[28]  J. Féret,et al.  Landscape-scale variation in plant community composition of an African savanna from airborne species mapping. , 2014, Ecological applications : a publication of the Ecological Society of America.

[29]  G. Foody,et al.  Measuring and modelling biodiversity from space , 2008 .

[30]  Julie P. Tuttle,et al.  QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: Implications for control and land use management , 2008 .

[31]  Thomas Schneider,et al.  A COMPARISON BETWEEN THE ISODATA AND THE ECOGNITION CLASSIFICATION METHODS ON BASIS OF FIELD DATA , 2000 .

[32]  Francesca Bovolo,et al.  Updating Land-Cover Maps by Classification of Image Time Series: A Novel Change-Detection-Driven Transfer Learning Approach , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Christian Heipke,et al.  MORPHOLOGIC CHANGE DETECTION IN THE WADDEN SEA FROM LIDAR DATA , 2008 .

[34]  Daniel G. Brown,et al.  Multi-dimensional vegetation structure in modeling avian habitat , 2007, Ecol. Informatics.

[35]  S. Goward,et al.  An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks , 2010 .

[36]  Florian Siegert,et al.  Monitoring Fire and Selective Logging Activities in Tropical Peat Swamp Forests , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Simon D. Jones,et al.  Remote sensing of nitrogen and water stress in wheat , 2007 .

[38]  S. Franklin,et al.  Remote sensing for large-area habitat mapping , 2005 .

[39]  P. O’Farrell,et al.  Remote sensing based ecosystem state assessment in the Sandveld Region, South Africa , 2013 .

[40]  Katsuya Saitoh,et al.  Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific , 2006 .

[41]  D. Haboudane,et al.  New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat , 2010 .

[42]  N. Pettorelli,et al.  Essential Biodiversity Variables , 2013, Science.

[43]  Gregory Asner,et al.  Tree Species Discrimination in Tropical Forests Using Airborne Imaging Spectroscopy , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[44]  V. Radeloff,et al.  Author's Personal Copy Mapping Abandoned Agriculture with Multi-temporal Modis Satellite Data , 2022 .

[45]  Giles M. Foody,et al.  Mapping a specific class for priority habitats monitoring from satellite sensor data , 2006 .

[46]  K. Soudani,et al.  Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands , 2006 .

[47]  Ling Luo,et al.  Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[48]  Vittorio Barale,et al.  Monitoring water quality in the coastal area of Tripoli (Lebanon) using high-resolution satellite data , 2008 .

[49]  F. Burel,et al.  Connectivity measures: a review , 2008, Landscape Ecology.

[50]  Markus Hollaus,et al.  Comparison of Methods for Estimation of Stem Volume, Stem Number and Basal Area from Airborne Laser Scanning Data in a Hemi-Boreal Forest , 2012, Remote. Sens..

[51]  Nicholas Goodwin,et al.  Development of an automated method for mapping fire history captured in Landsat TM and ETM + time series across Queensland, Australia , 2014 .

[52]  Brian R. Sturtevant,et al.  Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data , 2009 .

[53]  Giles M. Foody,et al.  Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[54]  U. Soergel,et al.  Monitoring and change detection of wadden sea areas using lidar data , 2013 .

[55]  Peter J. Mumby,et al.  Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn) , 2011 .

[56]  Caspar A. Mücher,et al.  Expert knowledge for translating land cover/use maps to General Habitat Categories (GHC) , 2014, Landscape Ecology.

[57]  M. Bindi,et al.  A simple model of regional wheat yield based on NDVI data , 2007 .

[58]  Takeshi Motohka,et al.  Using time series PALSAR gamma nought mosaics for automatic detection of tropical deforestation: A test study in Riau, Indonesia , 2014 .

[59]  Raymond F. Kokaly,et al.  Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes , 2013 .

[60]  K. Price,et al.  Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas , 2002 .

[61]  Cathleen E. Jones,et al.  State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill , 2012 .

[62]  Bruce W. Pengra,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[63]  S. Dong,et al.  Forest fragmentation and landscape connectivity change associated with road network extension and city expansion: A case study in the Lancang River Valley , 2014 .

[64]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[65]  A. Lechner,et al.  CHARACTERISING UPLAND SWAMPS USING OBJECT-BASED CLASSIFICATION METHODS AND HYPER-SPATIAL RESOLUTION IMAGERY DERIVED FROM AN UNMANNED AERIAL VEHICLE , 2012 .

[66]  Arko Lucieer,et al.  Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions , 2011 .

[67]  Helmi Zulhaidi Mohd Shafri,et al.  yperspectral discrimination of tree species with different classifications using ingle-and multiple-endmember , 2013 .

[68]  G. Hoogenboom,et al.  Integration of MODIS LAI and vegetation index products with the CSM–CERES–Maize model for corn yield estimation , 2011 .

[69]  S. Suárez‐Seoane,et al.  Large-scale habitat selection by agricultural steppe birds in Spain: identifying species–habitat responses using generalized additive models , 2002 .

[70]  Richard A. Hallett,et al.  Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies , 2008 .

[71]  Zhao Wenji,et al.  Using RS and GIS to monitoring Beijing wetland resources evolution , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[72]  P. Balvanera,et al.  Quantifying the evidence for biodiversity effects on ecosystem functioning and services. , 2006, Ecology letters.

[73]  Ramón Pérez-Pérez,et al.  An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: A case study for Quercus pyrenaica forests , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[74]  Fabio Del Frate,et al.  Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[75]  Petteri Packalen,et al.  Assessing and modeling moose (Alces alces) habitats with airborne laser scanning data , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[76]  P. Leadley,et al.  Impacts of climate change on the future of biodiversity. , 2012, Ecology letters.

[77]  P. Sutton,et al.  Changes in the global value of ecosystem services , 2014 .

[78]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[79]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[80]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[81]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[82]  Patrick Hostert,et al.  Using annual time-series of Landsat images to assess the effects of forest restitution in post-socialist Romania , 2012 .

[83]  W. Keeton,et al.  Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007 , 2009 .

[84]  José I. Barredo,et al.  Mapping and assessment of ecosystems and their services - An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020 , 2013 .

[85]  P. Defourny,et al.  Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery , 2006 .

[86]  M. Fladeland,et al.  Remote sensing for biodiversity science and conservation , 2003 .

[87]  Y. Ryu,et al.  Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors , 2014 .

[88]  Andrew K. Skidmore,et al.  Integrating conventional classifiers with a GIS expert system to increase the accuracy of invasive species mapping , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[89]  Javier Martínez-López,et al.  Remote sensing of plant communities as a tool for assessing the condition of semiarid Mediterranean saline wetlands in agricultural catchments , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[90]  N. Pettorelli,et al.  Satellite remote sensing for applied ecologists: opportunities and challenges , 2014 .

[91]  J. Marshall,et al.  Remote sensing of exposure to NO2: satellite versus ground based measurement in a large urban area , 2013 .

[92]  Gunter Menz,et al.  Mapping small wetlands of Kenya and Tanzania using remote sensing techniques , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[93]  B. Haack,et al.  Percentage canopy cover – using Landsat imagery to delineate habitat for Myanmar's endangered Eld's deer (Cervus eldi) , 2005 .

[94]  Philippe C. Baveye,et al.  Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery , 2008 .

[95]  Dennis C. Duro,et al.  Predicting species diversity in agricultural environments using Landsat TM imagery , 2014 .

[96]  P. Aplin,et al.  Author's Personal Copy Woody Species Diversity in Temperate Andean Forests: the Need for New Conservation Strategies , 2022 .

[97]  H. Nagendra,et al.  Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats , 2013 .

[98]  P. Gong,et al.  Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery , 2014 .

[99]  S. García-Gigorro,et al.  Forest Fragmentation Estimated from Remotely Sensed Data: Is Comparison Across Scales Possible? , 2005, Forest Science.

[100]  Manjunath V. Joshi,et al.  Super-Resolution of Hyperspectral Images: Use of Optimum Wavelet Filter Coefficients and Sparsity Regularization , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[101]  Timo Tokola,et al.  Use of ALS, Airborne CIR and ALOS AVNIR-2 data for estimating tropical forest attributes in Lao PDR , 2011 .

[102]  L. Fahrig Effects of Habitat Fragmentation on Biodiversity , 2003 .

[103]  Shuwen Zhang,et al.  Multitemporal analysis of forest fragmentation in the upstream region of the Nenjiang River Basin, Northeast China , 2012 .

[104]  Kristine N. Stewart,et al.  Averting biodiversity collapse in tropical forest protected areas , 2012, Nature.

[105]  Kurt McLaren,et al.  Assessing deforestation and fragmentation in a tropical moist forest over 68 years; the impact of roads and legal protection in the Cockpit Country, Jamaica , 2014 .

[106]  Josef Pennerstorfer,et al.  Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling , 2013 .

[107]  T. Brooks,et al.  Global Biodiversity Conservation Priorities , 2006, Science.

[108]  Arko Lucieer,et al.  apping invasive Fallopia japonica by combined spectral , spatial , and temporal nalysis of digital orthophotos , 2012 .

[109]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[110]  Oscar Garcia-Pineda,et al.  Adaptive thresholding algorithm based on SAR images and wind data to segment oil spills along the northwest coast of the Iberian Peninsula. , 2012, Marine pollution bulletin.

[111]  Francisco Artigas,et al.  Balloon imagery verification of remotely sensed Phragmites australis expansion in an urban estuary of New Jersey, USA , 2010 .

[112]  Norbert Pfeifer,et al.  Categorizing Wetland Vegetation by Airborne Laser Scanning on Lake Balaton and Kis-Balaton, Hungary , 2012, Remote. Sens..

[113]  Santiago Saura,et al.  A new habitat availability index to integrate connectivity in landscape conservation planning : Comparison with existing indices and application to a case study , 2007 .

[114]  Pinki Mondal,et al.  Mapping cropping intensity of smallholder farms: A comparison of methods using multiple sensors , 2013 .

[115]  David P. Roy,et al.  Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices , 2010 .

[116]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[117]  Ruiliang Pu,et al.  Mapping detailed seagrass habitats using satellite imagery , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[118]  Zhenyao Shen,et al.  An overview of research on agricultural non-point source pollution modelling in China , 2012 .

[119]  Mario Chica-Olmo,et al.  Downscaling Cokriging for Super-Resolution Mapping of Continua in Remotely Sensed Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[120]  Joanne C. White,et al.  Multi-temporal analysis of high spatial resolution imagery for disturbance monitoring , 2008 .

[121]  Tarmo Virtanen,et al.  The fragmented nature of tundra landscape , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[122]  Peter T. Fretwell,et al.  Whales from Space: Counting Southern Right Whales by Satellite , 2014, PloS one.

[123]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[124]  Sunil Kumar,et al.  Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA , 2008, Biodiversity and Conservation.

[125]  James Rowland,et al.  Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI , 2014 .

[126]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[127]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[128]  Dhaval Vyas,et al.  Evaluation of classifiers for processing Hyperion (EO-1) data of tropical vegetation , 2011, Int. J. Appl. Earth Obs. Geoinformation.

[129]  Zongxu Pan,et al.  Super-Resolution Based on Compressive Sensing and Structural Self-Similarity for Remote Sensing Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[130]  Caspar A. Mücher,et al.  Land cover to habitat map translation: Disambiguation rules based on Earth Observation data , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[131]  Kaiguang Zhao,et al.  Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA , 2009 .

[132]  Ben Somers,et al.  Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers , 2012 .

[133]  Santiago Saura,et al.  Changes and interactions between forest landscape connectivity and burnt area in Spain , 2013 .

[134]  Masanobu Shimada,et al.  Assessment of ALOS PALSAR 50 m Orthorectified FBD Data for Regional Land Cover Classification by Support Vector Machines , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[135]  John A. Gamon,et al.  Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS , 2006 .

[136]  I. Herrmann,et al.  LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands , 2011 .

[137]  Tania Stathaki,et al.  A rule-based classification methodology to handle uncertainty in habitat mapping employing evidential reasoning and fuzzy logic , 2014, Pattern Recognit. Lett..

[138]  Xiangming Xiao,et al.  Modeling gross primary productivity for winter wheat―maize double cropping system using MODIS time series and CO2 eddy flux tower data , 2009 .

[139]  B. Jonsson,et al.  Exploring potential biodiversity indicators in boreal forests , 1999, Biodiversity & Conservation.

[140]  Antoine Collin,et al.  Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength LiDAR , 2010 .

[141]  Iphigenia Keramitsoglou,et al.  Habitat mapping using machine learning-extended kernel-based reclassification of an Ikonos satellite image , 2006 .

[142]  Gerald L. Kooyman,et al.  An Emperor Penguin Population Estimate: The First Global, Synoptic Survey of a Species from Space , 2012, PloS one.

[143]  Daniel Clewley,et al.  Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data , 2011 .

[144]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[145]  R. Lucas,et al.  Copernicus Biodiversity Monitoring Services: The FP7 SPACE projects perspective – White Paper , 2013 .

[146]  Dehua Zhao,et al.  Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery , 2011 .

[147]  Jing M. Chen,et al.  Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS , 2014 .

[148]  Predicting spatially explicit coral reef fish abundance, richness and Shannon–Weaver index from habitat characteristics , 2011, Biodiversity and Conservation.

[149]  P. Trathan,et al.  Penguins from space: faecal stains reveal the location of emperor penguin colonies , 2009 .

[150]  L. Dente,et al.  Assimilation of leaf area index derived from ASAR and MERIS data into CERES - wheat model to map wheat yield , 2008 .

[151]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[152]  Edson E. Sano,et al.  Land cover mapping of the tropical savanna region in Brazil , 2010, Environmental monitoring and assessment.

[153]  Damien Arvor,et al.  Earth Observation Data for Habitat Monitoring ( EODHaM ) system , 2014 .

[154]  Clement Atzberger,et al.  Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data , 2012, Remote. Sens..

[155]  Eric S. Kasischke,et al.  Assessment of C-band synthetic aperture radar data for mapping and monitoring Coastal Plain forested wetlands in the Mid-Atlantic Region, U.S.A. , 2008 .

[156]  Yasser Maghsoudi,et al.  Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[157]  Barbara Cafarelli,et al.  Very high resolution Earth observation features for monitoring plant and animal community structure across multiple spatial scales in protected areas , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[158]  Pedro Martins da Silva,et al.  Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales , 2009 .

[159]  D. Flanders,et al.  Preliminary evaluation of eCognition object-based software for cut block delineation and feature extraction , 2003 .

[160]  Donghai Zheng,et al.  A method coupled with remote sensing data to evaluate non-point source pollution in the Xin'anjiang catchment of China. , 2012, The Science of the total environment.

[161]  Ruiliang Pu,et al.  Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models , 2006 .

[162]  Andrew Nelson,et al.  Delivering a Global, Terrestrial, Biodiversity Observation System through Remote Sensing , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[163]  Huajun Tang,et al.  Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[164]  C. Pittiglio,et al.  Identifying transit corridors for elephant using a long time-series , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[165]  H. Nagendra Using remote sensing to assess biodiversity , 2001 .

[166]  Michael Sommer,et al.  Application of satellite remote sensing for mapping wind erosion risk and dust emission‐deposition in Inner Mongolia grassland, China , 2012 .

[167]  M. Bauer,et al.  A 20-year Landsat water clarity census of Minnesota's 10,000 lakes , 2008 .

[168]  Nisar Hussain,et al.  Characterizing soil salinity in irrigated agriculture using a remote sensing approach , 2013 .

[169]  Ming-An Lee,et al.  Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean , 2012 .

[170]  Caspar A. Mücher,et al.  Integrating remote sensing in Natura 2000 habitat monitoring: prospects on the way forward , 2011 .

[171]  Mark A. Friedl,et al.  Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology , 2012 .

[172]  G. Fitzgerald,et al.  Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a Canopy Chlorophyll Content Index , 2012 .

[173]  Gregory Asner,et al.  Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data , 2012, Remote. Sens..

[174]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem☆ , 2008 .

[175]  Athanassios I. Sfougaris,et al.  electing landscape metrics as indicators of spatial heterogeneity — A omparison among Greek landscapes , 2013 .

[176]  Nathalie Pettorelli,et al.  The application of remote sensing for marine protected area management , 2014 .

[177]  Shuisen Chen,et al.  Remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary – A case study in Modaomen water way, China , 2009 .

[178]  Jonathan Cheung-Wai Chan,et al.  An evaluation of ensemble classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular hyperspectral (CHRIS/Proba) imagery , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[179]  Nicholas C. Coops,et al.  Prediction and assessment of bark beetle-induced mortality of lodgepole pine using estimates of stand vigor derived from remotely sensed data , 2009 .

[180]  Gabriele Moser,et al.  Article in Press G Model International Journal of Applied Earth Observation and Geoinformation Mapping Natural and Urban Environments Using Airborne Multi-sensor Ads40–mivis–lidar Synergies , 2022 .

[181]  Susan L. Ustin,et al.  Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem , 2008 .

[182]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[183]  Andrew K. Skidmore,et al.  Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery , 2009, Int. J. Appl. Earth Obs. Geoinformation.

[184]  Sean Sloan,et al.  Overcoming Limitations with Landsat Imagery for Mapping of Peat Swamp Forests in Sundaland , 2012, Remote. Sens..

[185]  Hiromitsu Samejima,et al.  Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian Borneo , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[186]  Josef Kellndorfer,et al.  Large-Area Classification and Mapping of Forest and Land Cover in the Brazilian Amazon: A Comparative Analysis of ALOS/PALSAR and Landsat Data Sources , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[187]  M. Neteler,et al.  Benefits of hyperspectral remote sensing for tracking plant invasions , 2011 .

[188]  C. Kleinn,et al.  Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory , 2009 .

[189]  Camilo Daleles Rennó,et al.  Assessment of deforestation in the Lower Amazon floodplain using historical Landsat MSS/TM imagery , 2011 .

[190]  M. Bock,et al.  Object-oriented methods for habitat mapping at multiple scales – Case studies from Northern Germany and Wye Downs, UK , 2005 .

[191]  Onisimo Mutanga,et al.  Potential utility of the spectral red-edge region of SumbandilaSat imagery for assessing indigenous forest structure and health , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[192]  Philip A. Townsend,et al.  Estimating the effect of gypsy moth defoliation using MODIS , 2008 .

[193]  Martin K. Obrist,et al.  Biodiversity indicators: the choice of values and measures , 2003 .

[194]  Andrew T. Hudak,et al.  Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests , 2014 .

[195]  Xiaofeng Li,et al.  Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA) , 2009 .

[196]  Gregory Asner,et al.  Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests , 2012, Remote. Sens..

[197]  Nicholas C. Coops,et al.  Development of a large area biodiversity monitoring system driven by remote sensing , 2007 .

[198]  G. Hay,et al.  Object-Based Image Analysis , 2008 .

[199]  Javier Gallego,et al.  Using CORINE land cover and the point survey LUCAS for area estimation , 2008, Int. J. Appl. Earth Obs. Geoinformation.

[200]  Serge Rambal,et al.  Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements , 2013 .

[201]  Jordi Cristóbal,et al.  Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[202]  Julian D. Marshall,et al.  Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area , 2013 .

[203]  J. Leeuw,et al.  Indirect remote sensing of a cryptic forest understorey invasive species , 2006 .

[204]  Nicholas C. Coops,et al.  Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data , 2010 .

[205]  Richard Gloaguen,et al.  Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[206]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[207]  Arnon Karnieli,et al.  redicting forest structural parameters using the image texture derived from orldView-2 multispectral imagery in a dryland forest , Israel , 2011 .

[208]  S. Purkis,et al.  Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago) , 2008, Coral Reefs.

[209]  Christopher Conrad,et al.  Quantifying and mapping ecosystem services supplies and demands: a review of remote sensing applications. , 2012, Environmental science & technology.

[210]  W. Cohen,et al.  Using Landsat-derived disturbance history (1972-2010) to predict current forest structure , 2012 .

[211]  Henrique M. Pereira,et al.  Global Biodiversity Change: The Bad, the Good, and the Unknown , 2012 .

[212]  Roland Brandl,et al.  Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages , 2009 .

[213]  Juha Hyyppä,et al.  TerraSAR-X Stereo Radargrammetry and Airborne Scanning LiDAR Height Metrics in Imputation of Forest Aboveground Biomass and Stem Volume , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[214]  Graeme M. Buchanan,et al.  Characterization of moorland vegetation and the prediction of bird abundance using remote sensing , 2005 .

[215]  Hong Jiang,et al.  The classification of late seral forests in the Pacific Northwest, USA using Landsat ETM+ imagery , 2004 .

[216]  Janet E. Nichol,et al.  Improved Biomass Estimation Using the Texture Parameters of Two High-Resolution Optical Sensors , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[217]  Shaun Quegan,et al.  Detection of tropical deforestation using ALOS-PALSAR: A Sumatran case study , 2012 .

[218]  Megan W. Lang,et al.  Lidar intensity for improved detection of inundation below the forest canopy , 2009, Wetlands.

[219]  G. Henebry,et al.  Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions , 2009 .

[220]  David A. Coomes,et al.  Remotely sensed indicators of forest conservation status: Case study from a Natura 2000 site in southern Portugal , 2013 .

[221]  Qingshan Liu,et al.  Improving the Spatial Resolution of Landsat TM/ETM+ Through Fusion With SPOT5 Images via Learning-Based Super-Resolution , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[222]  James Strittholt,et al.  Sourcebook on Remote Sensing and Biodiversity Indicators. Convention on Biological Diversity Technical Series 32 , 2007 .

[223]  Patrick Johnson,et al.  Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests , 2011, Annals of Forest Science.

[224]  Christian Schuster,et al.  Towards Detecting Swath Events in TerraSAR-X Time Series to Establish NATURA 2000 Grassland Habitat Swath Management as Monitoring Parameter , 2011, Remote. Sens..

[225]  G. Vieilledent,et al.  Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier , 2013 .

[226]  C. Woodcock,et al.  Continuous monitoring of forest disturbance using all available Landsat imagery , 2012 .

[227]  L. Vierling,et al.  Spinning a laser web: predicting spider distributions using LiDAR. , 2011, Ecological applications : a publication of the Ecological Society of America.

[228]  Maria Petrou,et al.  ESTIMATION OF VEGETATION HEIGHT THROUGH SATELLITE IMAGE TEXTURE ANALYSIS , 2012 .

[229]  M. Wulder,et al.  Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data , 2011 .

[230]  山北 剛久 The tenth meeting of the conference of the parties to the convention on biological diversity (CBD-COP10) , 2011 .

[231]  L. Kooistra,et al.  Mapping invasive woody species in coastal dunes in the Netherlands: a remote sensing approach using LIDAR and high‐resolution aerial photographs , 2012 .

[232]  Liang Liang,et al.  Identification of understory invasive exotic plants with remote sensing in urban forests , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[233]  M. Maslin,et al.  Sustainability: Choose satellites to monitor deforestation , 2013, Nature.

[234]  J. Dempewolf,et al.  Analysis of the Impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan — Uganda border using multitemporal Landsat imagery , 2012 .

[235]  Woody Turner,et al.  Alien species: Monster fern makes IUCN invader list , 2013, Nature.

[236]  J. Peñuelas,et al.  Using topographic and remotely sensed variables to assess ozone injury to conifers in the Sierra Nevada (USA) and Catalonia (Spain) , 2013 .

[237]  Peter Vogt,et al.  Towards a pan-European burnt scar mapping methodology based on single date medium resolution optical remote sensing data , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[238]  Jennifer Pontius,et al.  Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty , 2014 .

[239]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[240]  J. Lamarque,et al.  Global Biodiversity: Indicators of Recent Declines , 2010, Science.