Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains

[1]  D. Benjamini,et al.  Adult lifespan maturation and degeneration patterns in gray and white matter: A mean apparent propagator (MAP) MRI study , 2022, Neurobiology of Aging.

[2]  P. Basser,et al.  COnstrained Reference frame diffusion TEnsor Correlation Spectroscopic (CORTECS) MRI: A practical framework for high-resolution diffusion tensor distribution imaging , 2022, bioRxiv.

[3]  P. Basser,et al.  High-resolution cortical MAP-MRI reveals areal borders and laminar substructures observed with histological staining , 2022, NeuroImage.

[4]  K. N. Magdoom,et al.  A novel framework for in-vivo diffusion tensor distribution MRI of the human brain , 2022, NeuroImage.

[5]  J. Aggleton,et al.  The anterior thalamic nuclei: core components of a tripartite episodic memory system , 2022, Nature Reviews Neuroscience.

[6]  Peter J. Basser,et al.  High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology , 2021, NeuroImage.

[7]  Bruce R. Rosen,et al.  Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome , 2021, NeuroImage.

[8]  J. Jovicich,et al.  Unraveling the MRI‐Based Microstructural Signatures Behind Primary Progressive and Relapsing–Remitting Multiple Sclerosis Phenotypes , 2021, Journal of magnetic resonance imaging : JMRI.

[9]  P. Basser,et al.  Whole-Brain Imaging of Subvoxel T1-Diffusion Correlation Spectra in Human Subjects , 2021, Frontiers in Neuroscience.

[10]  Hans J. Johnson,et al.  Advanced Normalization Tools (ANTs) , 2020 .

[11]  Afonso C. Silva,et al.  Marmoset Brain Mapping V3: Population multi-modal standard volumetric and surface-based templates , 2020, NeuroImage.

[12]  Christi R. P. Sullivan,et al.  Deep brain stimulation for psychiatric disorders: From focal brain targets to cognitive networks , 2020, NeuroImage.

[13]  Jun Shen,et al.  Mean Apparent Propagator MRI Is Better Than Conventional Diffusion Tensor Imaging for the Evaluation of Parkinson’s Disease: A Prospective Pilot Study , 2020, Frontiers in Aging Neuroscience.

[14]  Zhongshuai Zhang,et al.  Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma , 2020, Korean journal of radiology.

[15]  P. Tierney,et al.  Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus , 2020, Brain Structure and Function.

[16]  S. Mori,et al.  Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging , 2020, Brain Structure and Function.

[17]  Chengru Song,et al.  Mean apparent propagator-MRI: A new diffusion model which improves temporal lobe epilepsy lateralization. , 2020, European journal of radiology.

[18]  David A. Leopold,et al.  A resource for detailed 3D mapping of white matter pathways in the marmoset brain , 2019, Nature Neuroscience.

[19]  M. Ladd,et al.  Mapping the human brainstem: Brain nuclei and fiber tracts at 3 T and 7 T , 2019, NMR in biomedicine.

[20]  O. Devinsky,et al.  3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 2: Basal Forebrain , 2019, American Journal of Neuroradiology.

[21]  F. Clascá,et al.  Cyto- and Myelo-Architecture of the Amygdaloid Complex of the Common Marmoset Monkey (Callithrix jacchus) , 2019, Front. Neuroanat..

[22]  O. Devinsky,et al.  3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 1: Brain Stem , 2019, American Journal of Neuroradiology.

[23]  Peter J. Basser,et al.  Measuring non-parametric distributions of intravoxel mean diffusivities using a clinical MRI scanner , 2019, NeuroImage.

[24]  E. Dayan,et al.  Functional neuroimaging of the central autonomic network: recent developments and clinical implications , 2018, Clinical Autonomic Research.

[25]  Boris Suchan,et al.  The Regulatory Role of the Human Mediodorsal Thalamus , 2018, Trends in Cognitive Sciences.

[26]  Christian Beaulieu,et al.  High resolution in-vivo diffusion imaging of the human hippocampus , 2018, NeuroImage.

[27]  B. Kundu,et al.  Deep brain stimulation for the treatment of disorders of consciousness and cognition in traumatic brain injury patients: a review. , 2018, Neurosurgical focus.

[28]  Nir Giladi,et al.  Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson’s disease rehabilitation , 2018, Neuroscience & Biobehavioral Reviews.

[29]  A. Horn,et al.  Identification of Functional Cell Groups in the Abducens Nucleus of Monkey and Human by Perineuronal Nets and Choline Acetyltransferase Immunolabeling , 2018, Front. Neuroanat..

[30]  Wei Sun,et al.  A probabilistic atlas of human brainstem pathways based on connectome imaging data , 2018, NeuroImage.

[31]  Cristina Granziera,et al.  On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke , 2018, Front. Neurosci..

[32]  Anna S. Mitchell,et al.  Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus , 2018, Front. Neurosci..

[33]  Peter J Basser,et al.  Efficient experimental designs for isotropic generalized diffusion tensor MRI (IGDTI) , 2018, Magnetic resonance in medicine.

[34]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[35]  Sabine Kastner,et al.  Thalamic functions in distributed cognitive control , 2017, Nature Neuroscience.

[36]  C. Pierpaoli,et al.  Diffusion MRI and the detection of alterations following traumatic brain injury , 2017, Journal of neuroscience research.

[37]  V. Sturm,et al.  Deep Brain Stimulation of the H Fields of Forel Alleviates Tics in Tourette Syndrome , 2017, Front. Hum. Neurosci..

[38]  S. Cragg,et al.  The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function. , 2017, ACS chemical neuroscience.

[39]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[40]  Siobhan Ewert,et al.  Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity , 2016, NeuroImage.

[41]  E. Callaway,et al.  Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments , 2016, Neuron.

[42]  Matthew D. Johnson,et al.  Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications , 2016, Front. Neurosci..

[43]  Carlo Pierpaoli,et al.  Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure , 2016, NeuroImage.

[44]  Patrick T. Hickey,et al.  Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization , 2015, Human brain mapping.

[45]  K. Amunts,et al.  Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns , 2015, Front. Neuroanat..

[46]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[47]  Trong-Kha Truong,et al.  Integrated RF/shim coil array for parallel reception and localized B 0 shimming in the human brain , 2014, NeuroImage.

[48]  Marc A Sommer,et al.  Advances in Understanding Mechanisms of Thalamic Relays in Cognition and Behavior , 2016 .

[49]  A. Roebroeck,et al.  Ultra-high field magnetic resonance imaging of the basal ganglia and related structures , 2014, Front. Hum. Neurosci..

[50]  Max C. Keuken,et al.  Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI , 2014, NeuroImage.

[51]  Arnaud Guidon,et al.  Dynamic and inherent B0 correction for DTI using stimulated echo spiral imaging , 2014, Magnetic resonance in medicine.

[52]  Julien Cohen-Adad,et al.  The Human Connectome Project and beyond: Initial applications of 300mT/m gradients , 2013, NeuroImage.

[53]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[54]  J. T. Erichsen,et al.  The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation , 2013, Front. Syst. Neurosci..

[55]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[56]  Robert Turner,et al.  High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla , 2013, Front. Hum. Neurosci..

[57]  T. Fukuda,et al.  Region-specific diversity of striosomes in the mouse striatum revealed by the differential immunoreactivities for mu-opioid receptor, substance P, and enkephalin , 2013, Neuroscience.

[58]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[59]  J. Obeso,et al.  Functional neuroanatomy of the basal ganglia. , 2012, Cold Spring Harbor perspectives in medicine.

[60]  Mary E. Meyerand,et al.  Sparse and Optimal Acquisition Design for Diffusion MRI and Beyond , 2012, Medical physics.

[61]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[62]  A. Goel,et al.  Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques , 2012, Journal of Clinical Neuroscience.

[63]  John S. Thornton,et al.  High resolution MR anatomy of the subthalamic nucleus: Imaging at 9.4T with histological validation , 2012, NeuroImage.

[64]  Craig D. Hardman,et al.  Stereotaxic and Chemoarchitectural Atlas of the Brain of the Common Marmoset (Callithrix Jacchus) , 2012 .

[65]  G. Sapiro,et al.  Comprehensive in vivo Mapping of the Human Basal Ganglia and Thalamic Connectome in Individuals Using 7T MRI , 2012, PloS one.

[66]  E. Díaz,et al.  Morphologic and immunohistochemical organization of the human habenular complex , 2011, The Journal of comparative neurology.

[67]  A. Graybiel,et al.  Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments , 2011, Front. Neuroanat..

[68]  M. Delong,et al.  Deep-Brain Stimulation for Basal Ganglia Disorders. , 2011, Basal ganglia.

[69]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[70]  K. Uğurbil,et al.  An Assessment of Current Brain Targets for Deep Brain Stimulation Surgery With Susceptibility-Weighted Imaging at 7 Tesla , 2010, Neurosurgery.

[71]  Allen W. Song,et al.  Myelin water weighted diffusion tensor imaging , 2010, NeuroImage.

[72]  J. T. Erichsen,et al.  Hippocampal–anterior thalamic pathways for memory: uncovering a network of direct and indirect actions , 2010, The European journal of neuroscience.

[73]  John D. Newman,et al.  A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus , 2009, Brain Research Reviews.

[74]  R. Thangavel,et al.  Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease , 2009, Neuroscience.

[75]  S. Kollias,et al.  Duvernoy's Atlas of the Human Brain Stem and Cerebellum , 2009, American Journal of Neuroradiology.

[76]  E.M. Haacke,et al.  Characterizing the Mesencephalon Using Susceptibility-Weighted Imaging , 2009, American Journal of Neuroradiology.

[77]  Okihide Hikosaka,et al.  Habenula: Crossroad between the Basal Ganglia and the Limbic System , 2008, The Journal of Neuroscience.

[78]  V. Visser-Vandewalle,et al.  The microanatomical environment of the subthalamic nucleus , 2007 .

[79]  Tsutomu Hashikawa,et al.  Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys , 2007, The Journal of comparative neurology.

[80]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[81]  J. Giménez-Amaya,et al.  Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced‐diaphorase interneurons in the human striatum , 2005, The Journal of comparative neurology.

[82]  Yi Ai,et al.  Correlation of R2 with total iron concentration in the brains of rhesus monkeys , 2005, Journal of magnetic resonance imaging : JMRI.

[83]  A. Parent,et al.  The pallidofugal motor fiber system in primates. , 2004, Parkinsonism & related disorders.

[84]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[85]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[86]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[87]  M. Delong,et al.  Course of motor and associative pallidothalamic projections in monkeys , 2001, The Journal of comparative neurology.

[88]  C. Pierpaoli,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[89]  D. Amaral,et al.  Organization of the intrinsic connections of the monkey amygdaloid complex: Projections originating in the lateral nucleus , 1998, The Journal of comparative neurology.

[90]  Y. Smith,et al.  Efferent connections of the internal globus pallidus in the squirrel monkey: I. topography and synaptic organization of the pallidothalamic projection , 1997, The Journal of comparative neurology.

[91]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[92]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[93]  S. T. Sakai,et al.  Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study , 1996, The Journal of comparative neurology.

[94]  P. Basser Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.

[95]  A. Graybiel,et al.  Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[97]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[98]  M Wiesendanger,et al.  Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: A multiple tracing study in macaque monkeys , 1994, The Journal of comparative neurology.

[99]  D. Price,et al.  The striatal mosaic in primates: striosomes and matrix are differentially enriched in ionotropic glutamate receptor subunits , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  R. J. Mullen,et al.  NeuN, a neuronal specific nuclear protein in vertebrates. , 1992, Development.

[101]  Kevin Cox,et al.  Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: I. Superior frontal and inferior temporal cortex , 1990, The Journal of comparative neurology.

[102]  J. Morrison,et al.  Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: II. Primary and secondary visual cortex , 1990, The Journal of comparative neurology.

[103]  R A Brooks,et al.  Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. , 1990, Radiology.

[104]  A. Parent Extrinsic connections of the basal ganglia , 1990, Trends in Neurosciences.

[105]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[106]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[107]  D. Amaral,et al.  Cholinergic innervation of the monkey amygdala: An immunohistochemical analysis with antisera to choline acetyltransferase , 1989, The Journal of comparative neurology.

[108]  A. Graybiel,et al.  Striosomes and extrastriosomal matrix contain different amounts of immunoreactive choline acetyltransferase in the human striatum , 1989, Neuroscience Letters.

[109]  A. Graybiel,et al.  Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: A combined golgi and immunocytochemical study in cat and ferret , 1988, Neuroscience.

[110]  L. Descarries,et al.  Distribution and Morphological Characteristics of Dopamine‐Immunoreactive Neurons in the Midbrain of the Squirrel Monkey (Saimiri sciureus) , 1988, The Journal of comparative neurology.

[111]  A. Graybiel,et al.  Subdivisions of the primate substantia nigra pars compacta detected by acetylcholinesterase histochemistry , 1987, Brain Research.

[112]  L. Sternberger,et al.  Varying degrees of phosphorylation determine microheterogeneity of the heavy neurofilament polypeptide (Nf-H) , 1987, Journal of Neuroimmunology.

[113]  G A Johnson,et al.  MRI of brain iron. , 1986, AJR. American journal of roentgenology.

[114]  Jérôme Yelnik,et al.  A histological atlas of the macaque (Macaca, mulatta) substantia nigra in ventricular coordinates , 1985, Brain Research Bulletin.

[115]  L. Sternberger,et al.  Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[116]  W. T. Thach,et al.  Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey , 1983, Brain Research Reviews.

[117]  L. Heimer,et al.  Ventral striatum and ventral pallidum Components of the motor system? , 1982, Trends in Neurosciences.

[118]  A. C. Cuello,et al.  The brain of the common marmoset (Callithrix jacchus) a stereotaxic atlas H. Stephan,G. Baron &W. K. Schwerdtfeger. 1980. Springer-Verlag, Berlin. 5 figs., 3 tab., 73 plates. V 91 pages. Cloth DM 168,-; approx. US $94.10 , 1981, Neuroscience.

[119]  S. Hsu,et al.  Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[120]  C. W. Ragsdale,et al.  Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[121]  N. Naik Technical Variations in Koelle's Histochemical Method for Demonstrating Cholinesterase Activity , 1963 .

[122]  O. Larsell,et al.  The cerebellum of the cat and the monkey , 1953, The Journal of comparative neurology.

[123]  M. Hallett,et al.  Functional neuroanatomy of the basal ganglia , 2021, Principles and Practice of Movement Disorders.

[124]  Atsushi Iriki,et al.  The 3-Dimensional Atlas of the Marmoset Brain , 2018, Brain Science.

[125]  Wolfgang M Pauli,et al.  Descriptor : A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei , 2018 .

[126]  M. Maarouf,et al.  Neuroanatomical background and functional considerations for stereotactic interventions in the H fields of Forel , 2017, Brain Structure and Function.

[127]  Thorsten Gerber,et al.  Human Nervous System , 2016 .

[128]  Alexandru Vlad Avram,et al.  Higher-order statistics of 3 D spin displacement probability distributions measured with MAP MRI , 2016 .

[129]  D. K. Cullen,et al.  SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury , 2015, Acta Neuropathologica.

[130]  P. Basser,et al.  The Variation of MAP-MRI – derived Parameters along White Matter Fiber Pathways in the Human Brain , 2013 .

[131]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[132]  Katsuki Nakamura,et al.  Stereotaxic Atlas of the Marmoset Brain , 2010 .

[133]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[134]  E. Jones Chapter I - The thalamus of primates , 1998 .

[135]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[136]  G. Schaltenbrand,et al.  Atlas for Stereotaxy of the Human Brain , 1977 .

[137]  Stephen J. DeArmond,et al.  Structure of the human brain : a photographic atlas , 1974 .

[138]  B. Libet,et al.  Somatosensory System , 1973, Handbook of Sensory Physiology.

[139]  J. Olszewski The Thalamus of the Macaca Mulatta: An Atlas for Use with the Stereotaxic Instrument , 1952 .